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1. INTRODUCTION 

1.1.  Pacific Madrone Background  

Pacific madrone (Arbutus menziesii) is a species of hardwood native to the western USA and has been 

waning due to the increasing fungal pathogens, including Phacidiopycnis washingtonensis, that 

promote Pacific madrone leaf blight (PMLB) (Elliott 1999; Sikdar et al. 2019). PMLB stresses leaves 

and makes trees more susceptible to deadly canker diseases such as Fusicoccum spp. (Elliott et al. 2002). 

It is predicted that some madrone populations may decline or disappear due to changing temperatures 

and precipitation associated with climate change (Elliott et al. 2012). Pacific madrone is visually 

distinctive by its burnt-orange bark hue that eventually lifts to uncover a light green and smooth 

bole. Pacific madrone reaches from southern California to Vancouver, B.C., and exists west of the 

Cascade Range in Oregon, USA. Madrone provides habitat for cavity nesters including woodpeckers 

and wrens (Reeves 2007) and produces sprouts that are browsed by sheep, goats, and deer. Madrone 

also produces berries that deer and many bird species feed upon (Sampson & Jesperson 1963). Madrone 

maintains leaves throughout the year and produces new leaf growth during spring. Madrone produces 

bright red berries and light-colored flowers which grow at the ends of its branches. Commercial 

applications include veneers, flooring, and other aesthetic uses (USDA 2006). Madrone is also planted 

for erosion control and as an attraction in landscaping.  Madrone is capable of growing in open sites 

that are well-drained with rocky soils (Bennett & Shaw 2008).   

1.2.  Foliar Blight  

Elliott et al. (2012) identified blight as a leading factor in the widespread decline of Pacific madrone. 

Numerous fungal pathogens can colonize young leaves and spread via spores in air or water primarily 

during spring rains (Bennett & Shaw 2008). Pacific madrone fungi are visible in the form of 

discoloration, spots, and galls on foliage. Disease can foster a tree’s susceptibility to increasing fungi 

colonization. Maloney et al. (2004) found that infection of A. menziesii by the pathogenic fungus 

Phytophthora ramorum with a secondary infection by Botryosphaeria dothidea created greater 

mortality than infection by either species alone.  Bennett & Shaw (2008) reported that Pacific madrone 
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Pacific madrone is susceptible to disease and blight from a variety of sources. Blight is a discoloration and 

withering of leaves that can be visually detected. Determining the cause of blight requires greater investigation 

and possibly lab-based testing. Our objectives were to explore the use of a multispectral sensor mounted on an 

unoccupied aircraft system (UAS) for investigating blight spatial-temporal patterns on individual madrone 

trees. We combined in situ blight detection survey methods on individual trees with UAS multi-spectral imagery 
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relationships of blight presence with remotely-sensed vegetation health indices. We also examined potential 

hydrological vectors for blight patterns by investigating whether three GIS-derived water flow accumulation 

models were related to blight patterns. We found that the Green Red Vegetation Index (GRVI) had the strongest 

correlation across time with blight presence although several other indices were correlated but less consistently. 

We also found that the D8 flow accumulation model (Jenson & Dominque 1988) was the only model of statistical 

significance in determining a relationship to blight presence. 
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is sensitive to foliage diseases caused by fungal organisms, that can be transported via airborne or water-

splashed spores during wet weather. Foliage diseases can often lead to leaf spots that can create foliage 

blight and kill entire leaves. Overall madrone health is heightened through sporadic deep watering rather 

than frequent light watering. Root diseases can also increase foliage loss or curl and are present in moist 

soil conditions that are associated with overwatered, heavy clay, or poorly drained soils. Extended 

periods of drought can increase disease susceptibility in trees although madrones are relatively drought 

tolerant. Detection and management of PMLB has frequently relied on visually-based field surveys on 

an individual tree basis. Impacted foliage is raked and destroyed in an attempt to fortify madrone 

populations as blight-impacted individuals are more susceptible to severe disease and stress associated 

with climate change (Bennett & Shaw 2008; Elliott et al. 2012). Traditional field-centric PMLB surveys 

are costly due individual tree surveys and the time and expense associated with accessing stand locations 

which can sometimes be remote. Individual tree surveys are key in traditional PMLB assessment in 

leading trees managers to decide where leaf raking and burning efforts, or other activities, should occur 

in order to control disease spread (Bennett & Shaw 2008). Field surveys also provide a potential vector 

for disease spread as surveyors move through infected stands (Lucas & Dickinson 1998). Unoccupied 

aircraft systems (UAS) and their ability to capture high resolution imagery for remotely sensing 

environmental phenomena can lead to increased PMLB survey efficiency. Individual tree assessments 

on a stand level with a UAS can also lessen the risk of exacerbating PMLB spread through 

anthropogenic vectors.  Our objectives were to explore the use of a multispectral sensor mounted on a 

UAS for investigating PMLB spatial-temporal patterns on an individual tree basis. Our approach 

combined in situ blight detection survey methods with UAS multi-spectral imagery collected during 

October of four consecutive years. We examined potential relationships of PMLB presence with 

remotely-sensed indices for determining vegetative health. We also investigated potential vectors for 

blight patterns by examining whether GIS-derived water flow accumulations were related to blight patterns.  

1.3.  Pertinent Previous Findings  

UAS are becoming prevalent in environmental monitoring applications due to their multiple advantages 

over traditional field surveys and occupied aircraft remote sensing. UAS are capable of rapidly 

surveying modestly-sized areas in a short time are much less expensive than occupied aircraft. 

Guimarães et al. (2020) found that UAS remote sensing resulted in efficient forest inventory data 

acquisition at reduced costs and more detail than ground-based inventories. UAS remotely sensed 

products can characterize tree physical attributes through elevation models, ortho-imagery, and point 

clouds. Vegetation indices, which can be used to infer vegetative health, can also be created through 

combinations of spectral signatures. Vertical takeoff and landing (VTOL) vehicles with color (red, 

green, and blue) wavelength (RGB)) sensors are the most affordable and common in forest health 

monitoring for disease detection. Repeated UAS remote sensing surveys have supported multi-temporal 

change detection. Marques et al. (2019) demonstrated how to extract features from UAS-derived color-

infrared (CIR) and true-color orthoimagery with a 16 cm ground sampling distance (GSD) to conduct 

a multitemporal analysis of chestnut trees. They reported a 98% success in detecting individual chestnut 

trees. A strong relationship between ground observations and UAS-derived tree height and diameter of 

R2 correlation coefficients (0.79 and 0.92, respectively) indicated that UAS biophysical attribute 

estimates could support individual tree change over time.  Barker et al. (2023) used a UAS to image a 

Pacific madrone stand and analyzed imagery using machine learning modeling. The final model 

detected PMLB blight status of 29 field surveyed madrone trees with a kappa coefficient of 0.71, a 

balanced accuracy of 0.85, and a true positive rate of 0.92. Disease presence inference has been derived 

by extracting physiologically relevant vegetation indices (VIs) from remotely sensed data. Marin et al. 

(2018) found vegetation indices derived from the Landsat 8 Operational Land Imager and Thermal 

Infrared Sensor were highly correlated with disease presence in the bacterial blight of coffee (r = 0.76) 

and disease severity (r = 0.52). Calderón et al. (2013) employed VIs to classify disease severity of 

Verticillium wilt at various stages in olive trees with high resolution UAS data. Zarco-Tejada et al. 

(2012) determined that water stress detection in a heterogeneous canopy within a citrus orchard was 

feasible with thermal and hyperspectral UAS imagery. The hyperspectral imagery was used to derive 

narrow-band indices that were found to be useful in stress detection. Di Nisio et al. (2020) studied 71 

olive trees infected with olive quick decline syndrome through a combination of multispectral and high-

resolution visible sensors. RGB, CIR, and NDVI indices were derived from UAS imagery and a 

Sørensen-Dice similarity coefficient that was created for each olive tree following tree segmentation. 
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Sørsensen-Dice coefficients were high, demonstrating successful tree delineation. Di Nisio et al. (2020) 

noted that NDVI alone was not sufficient for distinguishing healthy trees from healthy grass and used 

machine-learning techniques to assist in this distinction. The olive quick decline syndrome classifier 

performed well with 98% sensitivity and 100% specificity. Garza et al. (2020) determined that the 

correlation between a triangular greenness index (TGI) created from UAS-derived imagery and field 

health measurements of citrus trees were useful to assess tree health and disease status. UAS imagery 

has also been used in previous studies to detect blight within a variety of species. Bagheri (2020) 

employed a UAS equipped with a multispectral sensor to quantify fire blight in 75 pear trees affected 

with differing levels of disease and achieved classification accuracies for healthy, asymptomatic, and 

symptomatic trees of 98.7%, 91.4%, and 93.9%, respectively. Sandino et al. (2018) used hyperspectral 

imagery captured by a UAS and machine learning to classify myrtle rust presence in paperbark trees 

and determined detection rates of 97.24% for healthy trees and 94.72% for affected trees.  

2. MATERIALS AND METHODS   

2.1.  Site and Data Acquisition  

The study area containing Pacific madrones is a common garden study with the aim to gather data 

regarding genetic traits of 105 pacific madrone families from 7 different ecoregions.  

 

Figure 1. Pacific madrone study site in northwest Oregon, USA. Points are locations of 29 field validation trees. 

Background is orthomosaic from UAS imagery flown in Oct. 2019. 
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The seed for this study was collected by Washington State University from 2006 to 2010. In February 

of 2011, researchers sowed plug trays and moved them into a greenhouse in April of 2011. In June of 

2011, seeds were germinated and placed outside until they were transplanted in the fall and winter of 

2011. The genetic traits investigated included disease resistance, growth traits, and suitability to 

predicted conditions under climate change conditions (Eliott et al. 2012). The site is located on privately 

owned land located north of Corvallis, Oregon, USA near N 44°43’, W 123°23’ (Figure 1). The study 

site is approximately 1.5 ha (3.6 acres) in area with a modest elevation gradient ranging between 235 

and 247 m. According to precipitation data acquired from PRISM Climate Group (2022), annual 

precipitation in the area was 1187 mm, 1411 mm, and 1585 mm, 1470 mm for 2019, 2020, 2021, and 

2022 respectively. We conducted field and aerial surveys during six site visits occurring on October 15, 

2019, May 28, 2020, October 15, 2020, May 28, 2021, October 15, 2021, and October 13, 2022 between 

approximately 12:00 and 15:00 PDT. The October 2019 flights occurred during scattered cloud 

conditions, and the May 2020, October 2020, May 2021, October 2021, and October 2022 flights during 

clear skies.  

2.2. Ground Survey  

For field validation purposes, we selected and surveyed 30 trees (ground survey trees) to characterize 

blight impacted to individual trees. However, one survey tree was uprooted during a wind storm in 

January 2021, reducing our sample size to 29. During each site visit, we revisited the same 29 ground 

survey trees. These trees were selected because they represented a broad spatial distribution and beset 

the full range of visible signs of disease, ranging from few visible signs to many affected leaves. Ground 

survey trees were stem mapped and georeferenced with a Trimble Geo XH global navigation satellite 

system receiver paired with a range pole-mounted external Tornado antenna. In each site visit, we 

assessed blight and measured the height of each ground survey tree. Tree height was measured with a 

measurement pole from base of stem to the highest point of each tree. Blight assessment was followed 

from methods outlined in DeWald et al. (2018) as follows: (1) Identify the most severely impacted leaf 

from current season growth and classify severity according to percentage of leaf area (0%, <25%, 25%-

50%, >50%) exhibiting signs of blight. (2)  Estimate incidence by visually examining the entire crown 

and estimating the percentage of tree leaves affected (<25, 25-50, 51-75, >75) by the most severe rating 

identified in step 1 (DeWald et al. 2018). (3) The incidence data is then used to assign a dominant 

severity class to each surveyed tree, and when two equally dominant severity classes are apparent, the 

most severe class is reported.  As a result of all ground survey trees having a visual severity rating that 

was greater than 50%, we modified DeWald et al.’s (2018) methods to increase levels of gradation to 

better correspond with the extended response of indicator variables in our remotely sensed data. In our 

survey, we integrated current year incidence to provide a better distinction between blight impacts of 

the previous years. This helps account for the unbalanced large influence the leaves from the most recent 

growing year have on the remotely sensed signal relative to the proportion to total leaf area. The most 

recent growing year’s leaves represent the largest proportion of the visible crown when viewed from 

above at nadir.   

2.3.  Calculating Blight Index  

We produced a combined blight index based on previous work by the assessment outlined by DeWald 

et al. (2018). Using percent of crown impacted (incidence, ranging from 0-100) at each blight severity 

category: 0%, <25%, 25%-50%, >50%, we multiplied crown percentages by 0, 0.33, 0.66, and 1, 

respectively. Last, we calculated the sum of those four values to report a combined blight index for each 

ground surveyed tree that ranged from 0 – 100.  

2.4.  Aerial Survey  

Remotely sensed imagery was collected using a Micasense Altum multispectral camera (Micasense 

2020) onboard a DJI Matrice 200 v2 quadcopter UAS for flights conducted on October 15, 2019, May 

28, 2020, October 15, 2020, May 28, 2021, and October 15, 2021. A DJI Matrice 300 quadcopter was 

used on October 13, 2022. The Altum camera contains five electrooptical (EO) bands sensitive to red, 

green, blue, near infrared, red edge, and one band that records radiant temperature in the longwave 

infrared (thermal) regions of the electromagnetic spectrum. The resolution of the EO bands and LWIR 

band is 4.3 cm and 67.8 cm ground sampling distance (GSD), respectively, at 100 m above ground level 
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for the first five bands and thermal band. Comprehensive Matrice and Altum flight and imaging 

specifications are described by Wing (2019). DJI Pilot Software (Year) was used to conduct flights 

autonomously to ensure the necessary image forward overlap and side overlap were achieved. Each 

flight lasted approximately 8 minutes in duration. The flight planning software allows the user to specify 

flight area, velocity, overlap, and altitude. The same flight plan was used for all 6 flights which included: 

flight altitude set to 100 m above ground level, ground velocity set to 5 m/s, forward and side overlap 

set to 80%. This amount of forward and side overlap produces the most geometrically accurate 

orthomosaics (Hostens et al. 2022; Nesbit & Hugenholtz 2019) at 25 overlapping images of any given 

location. Before and after each flight, we imaged a spectral calibration target with the multispectral 

camera to calibrate the EO bands. This step facilitates comparison of at-sensor reflectance data captured 

during different flights by accounting for scene irradiance and correcting using the empirical line 

method in photogrammetry software.  

2.5.  Image Processing  

Using Agisoft Metashape (2024) photogrammetry software, image processing was completed with 

processing parameters based on sensor manufacturer’s recommendations. Radiometric calibration was 

applied to imagery during processing in Metashape by sourcing the spectral calibration target images 

taking during each flight and specifying the manufacturer-provided albedo values. The five non thermal 

bands were transformed to from 16-bit digital numbers to surface reflectance values between 0.0 and 

1.0, where 1 represents 100% reflectance of incident light for the specified band. Thermal values were 

converted from centi-Kelvin to Celsius (cK/100-273.15) for more direct interpretation. The subsequent 

orthomosaic raster files containing 6 bands had a resolution of approximately 5 cm ground sampling 

distance (GSD). Using the nearest neighbor assignment method, the thermal band was automatically 

resampled from 67.8 cm GSD to match the GSD of the non-thermal bands.  

In order to produce nine vegetation indexes, the orthomosaics were imported to R (R Core Team 2021) 

using the Raster package (Hijmans 2018). The vegetation indexes are known to indicate the structural 

and/or physiological condition of vegetation (Table 1). This brought our total number of bands to 15.   

Table 1. Vegetation indices (VIs) constructed from individual bands 1-6. Reference denotes the source of the VI 

when applicable. 

Band  Name or Vegetation Index  Reference  

1 Blue ( ) NA 

2 Green ( ) NA 

3 Red ( ) NA 

4 Red edge ( ) NA 

5 Near infrared ( ) NA 

6 Longwave infrared (LWIR) NA 

7 Triangular Greenness Index (TGI) (Hunt et al. (2011, 2013)) 

8 Green Red Vegetation Index (GRVI) Tucker (1979) 

9 Normalized Difference Vegetation Index (NDVI) Rouse et al. (1974) 

10 Normalized Difference Red Edge (NDRE) Barnes et al. (2000) 

11 Green Normalized Difference Vegetation Index (GNDVI) Gitelson et al. (1996) 

12 Modified Simple Ratio Index (MSR) Chen (1996) 

13 Modified Simple Ratio Index Red Edge (MSRE) Cao et al. (2013) 

14 Green Chlorophyll Index (GCI) Gitelson et al. (2005) 

15 Red Edge Chlorophyll Index (RECI) Gitelson et al. (2005) 

2.6. Tree Crown Delineation and VI Creation  

To manually delineate 1,349 tree crowns, we used ArcGIS Pro Version 2.8.3 (ESRI 2024) and generated 

circular buffers. Circle radius and center were identified and manually measured for each tree using the 

true color orthomosaic from October 2019 as a reference. Using ArcGIS, the 29 ground survey trees 

were associated with their corresponding tree crown using GPS. Tree crown circles were exported into 

the R environment and using the exactextractr tool (Baston 2021), we were able to calculate the mean 

of each of the 15 bands (Table 1) in each of the given time periods.  
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2.7.  Deriving Flow Accumulation from DTM  

To produce a flow accumulation raster, elevation data of the AOI is required. The Oregon Department 

of Geology and Mineral Industries (DOGAMI) Oregon Lidar Consortium (2024) funded an aerial lidar 

survey mission that covered the Madrone Research Plot on 1/30/2012, reporting an RSME of 0.05m. 

Derived from this survey, DOGAMI Data Lidar Web Service offers a bare earth digital elevation model 

(DEM) data product, with spatial resolution of 3 international feet. We acquired the DEM and imported 

it into ESRI’s ArcGIS Pro software (ESRI 2024) to convert the unit values to meters, reproject into 

NAD 1983 UTM Zone 10N reference frame, and clip the elevation model to the extent of the research 

plot boundaries. The clipped DEM raster was processed through three separate flow direction models; 

D8, DINF and MFD. Within ArcGIS Pro, the Flow Direction tool allows for direction of flow to be 

determined throughout each cell of a surface model raster through the use of one of these model 

algorithms. The first of these models, the D8 or eight-direction flow model (Jenson & Dominque 1988) 

calculates the direction of flow by determining the direction of steepest descent, effectively taking a 

central raster cell of highest elevation value and comparing the change in elevation between eight 

surrounding cells to determine the highest chance of flow based on the greatest change in elevation. An 

alternative method, D-Infinity (DINF) presented by Tarboton (Tarboton, 1997) determines the flow 

direction based on the steepest slope of a triangular facet in which flow direction is mapped from a 

floating point in the direction of a single angle ranging from 0 to 360 degrees counter-clockwise. The 

final flow direction algorithm, the Multiple Flow Direction (MFD) algorithm described by Qin et al. 

(2007), partitions the flow from a central raster cell across all downslope neighbors based on a function 

of the maximum slope gradient. This model allows for the consideration of local terrain conditions 

observed within the broader area of interest.   

2.8.  Analysis of Surface Flow on PMLB   

To assess the potential impact of surface flow on PMLB prevalence, we examined statistical 

relationships between flow accumulation and blight index for 29 ground survey trees by producing 

simple linear regression models at each time step. We hypothesized trees that experience higher flow 

accumulation would demonstrate higher levels of blight as pathogens that cause the disease are thought 

to spread via water particles. Additionally, we investigated the relationship between blight index and 

the six bands and derived VIs to determine which variable is best suited for indicating blight. We 

examined Pearson’s correlation coefficients via correlation matrices to assess potential relationships 

and produced simple linear regression models for variables with a high correlation to blight index. 

Following the creation of three distinct flow direction models based on the D8, DINF and MFD 

algorithms, the ArcGIS Pro Flow Accumulation tool was used to map the calculated accumulated weight 

of all cells flowing into each adjacent downslope cell in three separate flow accumulation raster models 

based on the initial flow direction model used. This resulted in raster models with cells that had a value 

based on the number of cells that flowed into each of them in the corresponding direction flow model. 

Having created a flow accumulation raster for each flow direction model, statistics could be calculated 

between the cell values of a given flow accumulation model and previously created tree canopy polygon 

model for the stand. In this case, a resulting table was created for each flow model in which the mean 

number of cells flowing into each tree canopy basal area was computed. These ArcGIS Pro tables were 

then exported into CSV files for further analysis.    

3. RESULTS 

3.1.  Surveyed Trees Vegetation Index Correlations  

We performed correlation calculations for the VIs and field assessed blight conditions of the 29 survey 

trees in the madrone stand across six remote sensing flights (Table 2). Generally, the indices were more 

highly correlated in the October 2019 and October 2020 site visits than the other four survey periods. 

The strongest correlations overall were detected in the October 2019 data with four indices (GRVI, 

MSR, NDVI, and TGI) having correlation coefficients greater than 0.50. The GRVI and MSR indices 

had correlation coefficients at or over 0.70 during this season. The GRVI index had the strongest 

relationship to field blight assessments in the October 2019 and May 2020 and 2021 field seasons. GRVI 

also had one of the stronger correlations during the October 2020 season.   
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Table 2. Vegetation indices and correlations with significance levels to field assessed blight conditions for 29 

survey trees. Bold font indicates significance at 0.05 p-value level. 

 Date 10/15/2019 10/15/2020 10/15/2021 10/13/2022 5/28/2020 5/28/2021 

GCI r2 0.11 0.23 0.05 0.14 0 0 

 p-value 0.08 0.01 0.23 0.05 0.86 0.95 

GRVI r2 0.78 0.33 0.02 0.06 0.43 0.29 

 p-value 0.00 0.00 0.00 0.00 0.00 0.00 
GNDVI r2 0.16 0.23 0.06 0.12 0.00 0.00 

 p-value 0.03 0.01 0.22 0.07 0.75 0.99 

MSR r2 0.70 0.36 0.05 0.10 0.25 0.15 

 p-value 0.00 0.00 0.24 0.10 0.01 0.04 

MSRE r2 0.18 0.35 0.09 0.13 0.02 0.02 

 p-value 0.02 0.00 0.12 0.06 0.48 0.44 

NDVI r2 0.60 0.30 0.03 0.10 0.27 0.18 

 p-value 0.00 0.00 0.35 0.09 0.00 0.02 

NDRE r2 0.19 0.36 0.09 0.13 0.02 0.02 

 p-value 0.02 0.00 0.12 0.06 0.49 0.45 

RECI r2 0.18 0.35 0.09 0.13 0.02 0.02 

 p-value 0.02 0.00 0.12 0.06 0.47 0.44 

TGI r2 0.54 0.00 0.02 0.01 0.22 0.2 

 p-value 0.00 0.72 0.51 0.56 0.01 0.02 

Overall correlations between VIs and field blight assessments were the weakest during the October 

2021 and 2022 seasons. The highest correlation was 0.09 (MSRE, NDRE, and RECI) during the October 

2021 season and 0.14 (GCI) during the October 2022 season.    

Results of multiple linear regression indicate a significant correlation between individual flight date 

taken as a factor along with GRVI and blight index (p < 0.005, adj R2 -> r2) (Figure 2). 

 

Figure 2. GRVI and blight index correlations by survey date 

3.2. Flow Direction and Accumulation   

Based on the results of the flow direction and flow accumulation model, there was only one model of 

significance created as an output from the subsequent zonal statistics function using the D8 algorithm 

and previously created tree canopy polygon layer. This model summary resulted from the flight data 

collected on 10/15/2021, providing a P-value of 0.005 and r2 value of 0.23 (Figure 3). While the P-value 

of 0.005 indicates a fairly large statistical significance, the r2 value was lower than desired but still 
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produced an acceptable goodness of fit for this particular model. Based upon these results, the D8 

algorithm outperformed both the DINF and MFD for this particular study using the 1 m resolution 

captured by the sensor. While there could be a multitude of reasons for this, given the relatively low 

elevation of this site and unlikelihood of significant amounts of overland flow actually occurring at this 

location, the more simplistic nature of the D8 algorithm may be better suited at capturing theoretical 

flow paths in low elevation areas or areas without significant changes in elevation as discussed in Jenson 

and Domingue (1988).  

 

Figure 3. D8 (Jenson & Dominque 1988) flow accumulation and blight index correlation (P = 0.005, r2 = 0.23). 

4. DISCUSSION 

4.1.  Vis and Blight Index  

Overall, GRVI was found to be the index most correlated with blight presence as determined by our 

ground survey efforts. It had the strongest correlation for three of the six survey periods and was near 

the top for a fourth. Conversely, it performed poorly in two of the survey periods (October 2021 and 

2002) but no other indices performed strongly during these two years. We considered weather data in 

trying to determine what factors might have influenced the correlation results. Our sources included the 

PRISM Climate Group (2022). We accessed mean precipitation and temperature for one year prior each 

data collection. We found high variation between annual average precipitation and only moderate 

variation among average temperatures across the survey periods. The strongest correlations between the 

VIs and blight presence occurred in October 2019 which featured above average precipitation and a 

below average temperature. All other survey seasons except October 2021 featured below average 

temperatures. Average annual precipitation was greatest, by far, during the October 2021 season yet this 

period is characterized by arguably the weakest correlations between the VIs and blight presence. The 

October 2022 season was also characterized by low correlations between VIs and blight presence but 

below average precipitation. While there may be a correlation between weather and VI performance in 

detecting blight, only the October 2019 weather data appear to be associated with positive VI 

performance.  

4.2. (Flow Accumulation): (cite) -> (Bennett & Shaw 2008) 

Results of linear regressions produced for each flight using mean flow accumulations from D8 and D 

infinity methods and blight index as the dependent variable did not demonstrate statistical significance, 

with the exception of the October 2021 flight and the D8 method. We expected to demonstrate a 

correlation between flow accumulation as PMLB is thought to spread via water particles (cite). It is 
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notable that the site experienced more intense drought conditions in October 2021 relative to the other 

October flights. During periods of drought, trees are more susceptible to disease, and although there 

may have been less precipitation, trees’ susceptibility to pathogens that cause PMLB may have been 

enhanced. Our temporal observations are limited, but this result may warrant further investigation. 

Additional variables, that may contribute to spread of foliar diseases include wind direction and 

potential sheltering from prevailing winds as water droplets may move throughout the site via air 

turbulence.   

Weight rasters, which were not used in this particular model could be applied to flow accumulation to 

account for differences in precipitation during these time periods. In theory, this additional input could 

be used to assist in accounting for things such as how much average rain had fallen in an area. This 

could lead to an output that represented the flow of this rainfall through each cell if it were to become 

surface runoff as demonstrated by Jenson and Domingue (1988). This additional input could assist in 

improving the accuracy of the flow accumulation model in other areas depending on terrain conditions. 

Our study site is relatively small in surface area and contributing area making it unlikely that surface 

runoff would occur in significant amounts.   

5. CONCLUSION 

Our objectives were to explore the use of a multispectral sensor mounted on an UAS for investigating 

blight spatial-temporal patterns in a Pacific madrone orchard. We examined potential relationships of 

blight presence with remotely-sensed vegetation health indices. We also assessed potential hydrological 

vectors for blight patterns. We found that GRVI had the strongest correlation with blight presence across 

time. Among the several flow accumulation models we tested, only the D8 flow accumulation model 

(Jenson & Dominque 1988) was statistically significantly related to blight presence. Our methods and 

results provide continued support for the efficiency of using high resolution mutli-band imagery for 

investigating blight presence in forested landscapes. 

6. ACKNOWLEDGEMENTS 

The authors thank Sean Dose, Weston Hustace, and Sadie Keller for their assistance in conducting 

fieldwork and manuscript preparation. 

REFERENCES 

[1] Agisoft. 2024. Agisoft Metashape User Manual. Available from https://www.agisoft.com/downloads/user-

manuals/, accessed November 11, 2024. 

[2] Bagheri, N. 2020. Application of aerial remote sensing technology for detection of fire blight infected pear 

trees. Computers and electronics in agriculture 168: 105147. doi:10.1016/j.compag.2019.105147.  

[3] Barker M.I., Burnett J.D., Haddad T., Hirsch W., Kun Kang D., Pawlak-Kjolhaug K., Wing M.G. 2023. 

Multi-temporal Pacific madrone leaf blight assessment with unoccupied aircraft systems. Ann. For. Res. 

66(1): 171-186, 2023. 

[4] Barnes, E., Clarke, T.R., Richards, S.E., Colaizzi, P., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., 

Riley, E., and Thompson, T.L. 2000. Coincident detection of crop water stress, nitrogen status, and canopy 

density using ground based multispectral data.  

[5] Baston, D., ISciences, L. L. C., & Baston, M. D. 2021. Package ‘exactextractr’. R Foundation for Statistical 

Computing. URL: https://cran. r-project. org. 

[6] Bennett, M. and Shaw, D.C. 2008. Diseases and insect pests of Pacific madrone. [Corvallis, Or.] : Oregon 

State University, Extension Service.  

[7] Calderón, R., Navas-Cortés, J.A., Lucena, C., and Zarco-Tejada, P.J. 2013. High-resolution airborne 

hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, 

temperature and narrow-band spectral indices. Remote sensing of environment 139: 231-245. 

doi:10.1016/j.rse.2013.07.031.  

[8] Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., and Jiang, R. 2013. Non-destructive 

estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops 

Research 154: 133-144. doi:https://doi.org/10.1016/j.fcr.2013.08.005.  

[9] Chen, J.M. 1996. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. 

Canadian Journal of Remote Sensing 22(3): 229-242. doi:10.1080/07038992.1996.10855178.  

[10] DeWald, L.E., Elliott, M., Sniezko, R.A., and Chastagner, G.A. Geographic and local variation in Pacific 

madrone (Arbutus menziesii) leaf blight. In Poster session presented at the 6th International Workshop on 



Applying Unoccupied Aircraft System Multispectral Remote Sensing to Examine Blight in a Pacific 

Madrone Orchard

 

International Journal of Forestry and Horticulture (IJFH)                                                                  Page | 29 

the Genetics of Tree-Parasite Interactions: Tree Resistance to Insects and Diseases: Putting Promise into 

Practice. Mt. Sterling, OH 2018.  

[11] Di Nisio, A., Adamo, F., Acciani, G., and Attivissimo, F. 2020. Fast Detection of Olive Trees Affected by 

Xylella Fastidiosa from UAVs Using Multispectral Imaging. Sensors (Basel, Switzerland) 20(17): 4915. 

doi:10.3390/s20174915.  

[12] Elliott, M. Diseases of Pacific Madrone. In The Decline of Pacific Madrone (Arbutus menziesii Pursh): 

Current Theory and Research Directions. Seattle, Washington 1999. Edited by A.B. Adams. pp. 48-60.  

[13] Elliott, M., Edmonds, R., and Mayer, S. 2002. Role of fungal diseases in decline of Pacific madrone. 

Northwest Science 76: 293-303.  

[14] Elliott, M., Chastagner, G.A., Dermott, G., Kanaskie, A., Sniezko, R.A., and Hamlin, J. Range-wide genetic 

variability in Pacific madrone (Arbutus menziesii): examining disease resistance, growth, and survival in a 

common garden study. In Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine 

M.; Alexander, Janice M.; Frankel, Susan J., tech. coords. Proceedings of the fourth international workshop 

on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees. Gen. 

Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. 

Department of Agriculture 2012. pp. 295 - 300.  

[15] ESRI. 2024. ArcGIS Pro. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview, accessed 

November 11, 2024. 

[16] Garza, B.N., Ancona, V., Enciso, J., Perotto-Baldivieso, H.L., Kunta, M., and Simpson, C. 2020. 

Quantifying Citrus Tree Health Using True Color UAV Images. Remote sensing (Basel, Switzerland) 12(1): 

170. doi:10.3390/rs12010170.  

[17] Gitelson, A.A., Kaufman, Y.J., and Merzlyak, M.N. 1996. Use of a green channel in remote sensing of global 

vegetation from EOS-MODIS. Remote sensing of environment 58(3): 289-298. doi:10.1016/s0034-

4257(96)00072-7.  

[18] Gitelson, A.A., Viña, A., Ciganda, V., Rundquist, D.C., and Arkebauer, T.J. 2005. Remote estimation of 

canopy chlorophyll content in crops. Geophysical Research Letters 32(8): L08403-n/a. 

doi:10.1029/2005GL022688.  

[19] Guimarães, N., Pádua, L., Marques, P., Silva, N., Peres, E., and Sousa, J.J. 2020. Forestry Remote Sensing 

from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote 

sensing (Basel, Switzerland) 12(6): 1046. doi:10.3390/rs12061046.  

[20] Hijmans, R. J. 2018. raster: Geographic data analysis and modeling. R package version, 2, 8. 

[21] Hostens, D.S., Dogwiler, T., Hess, J.W., Pavlowsky, R.T., Bendix, J., and Martin, D.T. 2022. Assessing the 

Role of sUASSmall unoccupied aerial systems (sUAS) Mission DesignMission designs in the Accuracy of 

Digital Surface Models Derived from Structure-from-Motion PhotogrammetryPhotogrammetry. In sUAS 

Applications in Geography. Edited by K. Konsoer, M. Leitner, and Q. Lewis. Springer International 

Publishing, Cham. pp. 123-156.  

[22] Hunt, E.R., Daughtry, C.S.T., Eitel, J.U.H., and Long, D.S. 2011. Remote Sensing Leaf Chlorophyll Content 

Using a Visible Band Index. Agronomy journal 103(4): 1090-1099. doi:10.2134/agronj2010.0395.  

[23] Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M., and Akhmedov, B. 2013. 

A visible band index for remote sensing leaf chlorophyll content at the canopy scale. ITC journal 21: 103-

112. doi:10.1016/j.jag.2012.07.020.  

[24] Jenson, S. K. & Dominque, J. O. 1988. Extracting Topographic Structure from Digital Elevation Data for 

Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 

1593–1600.  

[25] Lucas, J.A. and Dickinson, C.H. 1998. Plant pathology and plant pathogens. 3rd ed. ed. Malden, Mass.: 

Blackwell Science, Malden, Mass.  

[26] Marin, D.B., de Carvalho Alves, M., Pozza, E.A., Belan, L.L., and de Oliveira Freitas, M.L. 2018. 

Multispectral radiometric monitoring of bacterial blight of coffee. Precision agriculture 20(5): 959-982. 

doi:10.1007/s11119-018-09623-9.  

[27] Marques, P., Pádua, L., Adão, T., Hruška, J., Peres, E., Sousa, A., and Sousa, J.J. 2019. UAV-Based 

Automatic Detection and Monitoring of Chestnut Trees. Remote Sensing 11(7): 855.  

[28] Micasense. 2020. Altum - Micasense. Available from https://micasense.com/altum/, accessed November 11, 2024. 

[29] Nesbit, P.R. and Hugenholtz, C.H. 2019. Enhancing UAV–SfM 3D Model Accuracy in High-Relief 

Landscapes by Incorporating Oblique Images. Remote Sensing 11(3): 239.  



Applying Unoccupied Aircraft System Multispectral Remote Sensing to Examine Blight in a Pacific 

Madrone Orchard

 

International Journal of Forestry and Horticulture (IJFH)                                                                  Page | 30 

[30] The Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar Consortium. 2024. 

https://www.oregon.gov/dogami/lidar/pages/index.aspx, accessed November 11, 2024. 

[31] PRISM Climate Group, Oregon State University. 2022. Available from https://prism.oregonstate.edu, data 

created 2022, accessed 6 Nov 2022. 

[32] Qin, C., Zhu, A. ‐X., Pei, T., Li, B., Zhou, C., & Yang, L. 2007. An adaptive approach to selecting a flow‐

partition exponent for a multiple‐flow‐direction algorithm. International Journal of Geographical 

Information Science, 21(4), 443–458. https://doi.org/10.1080/13658810601073240  

[33] R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria.  

[34] Reeves, S.L. 2007. Arbutus menziesii. Available from https://www.fs.fed.us/database/feis/plants/tree/ 

arbmen/all.html [accessed January 11 2022].  

[35] Rouse, J.W., Jr., Haas, R.H., Schell, J.A., and Deering, D.W. 1974. Monitoring Vegetation Systems in the 

Great Plains with Erts. p. 309.  

[36] Sampson, A.W. and Jesperson, B., S. 1963. California range brushlands and browse plants. Berkeley: 

Division of Agricultural Sciences, University of California, Berkeley. pp. 127.  

[37] Sandino, J., Pegg, G., Gonzalez, F., and Smith, G. 2018. Aerial Mapping of Forests Affected by Pathogens 

Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. Sensors 18(4). doi:10.3390/s18040944.  

[38] Tarboton, D. G. 1997. A new method for the determination of flow directions and upslope areas in grid 

digital elevation models. Water Resources Research, 33(2), 309–319. https://doi.org/10.1029/96WR03137  

[39] Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote 

sensing of environment 8(2): 127-150. doi:10.1016/0034-4257(79)90013-0.  

[40] USDA. 2006. Pacific madrone - Plant Guide. The PLANTS Database (http://plants.usda.gov). National Plant 

Data Team, Greensboro, NC 27401-4901 USA.  

[41] Wing, M.G. 2019. Unmanned aircraft systems for remote sensing of vegetation vigor. JOJ Hortic Arboric 2(4).  

[42] Zarco-Tejada, P.J., González-Dugo, V., and Berni, J.A.J. 2012. Fluorescence, temperature and narrow-band 

indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a 

thermal camera. Remote sensing of environment 117: 322-337. doi:10.1016/j.rse.2011.10.007.  

 

Citation: Michael Wing et al. Applying Unoccupied Aircraft System Multispectral Remote Sensing to Examine 

Blight in a Pacific Madrone Orchard. International Journal of Forestry and Horticulture (IJFH. 2024; 

10(1):20-30. DOI: https://doi.org/10.20431/ 2454-9487.1001004 

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited. 

https://doi.org/10.1080/13658810601073240
http://plants.usda.gov/

