
International Journal of Advanced Research in Physical Science (IJARPS) 

Volume 8, Issue 4, 2021,  PP 1-15 

ISSN No. (Online) 2349-7882 

www.arcjournals.org 

 

 

International Journal of Advanced Research in Physical Science (IJARPS)                                         Page | 1 

Analytical Qualitative and Quantitative Model of the Transport 

of Photons and Accelerated Particles through Layers of Materials 

in the Generalized Diffusion Approximation. Mean Range, 

Backscattering and Transmission Coefficients, Energy of 

Backscattered Particles, Particle and Energy Distributions along 

the Coordinate, Angular Dependencies 

V.A.Nikerov* 

Doctor of Phys.-Math. Sciences, Professor; Principle Researcher, National Research Center «Kurchatov 

Institute»; Professor, Moscow Automobile and Highway State Technical University (MADI) Russia, n@wswr.ru 

 

 

1. INTRODUCTION 

The general problem of photons and accelerated particles transport through layers of materials has been 

considered for a long time (and is still considered by many researchers) to be difficult for analytical 

solutions, and was solved mainly by the Monte Carlo method [1]. However, in many cases analytical 

models and solutions, even approximate ones, are required. Firstly, they give a general visual picture of 

what is happening. Secondly, they are ideal for optimization problems. Thirdly, they work more reliably 

as an element of a more general and complex problems. And already G. Bethe and J. Jacob [2] in their 

age theory considered the semi-analytical spatial problem of accelerated electrons transport in the 

diffusion approximation. Moreover, the created approach proposed an analytical solution to the problem 

for materials with atomic charge Z> 7. Essential in the approach was the selection of the initial stage of 

transport and the creation of the concept of isotropization length. This stage provides the transformation 

of monodirectional beam electrons transport to diffusion transport and gives the possibility to describe 
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Abstract: An analytical qualitative and quantitative model of the transport of photons and accelerated particles 

through the layers of materials in the generalized diffusion approximation is formulated consistently. It is based 

on the limiting cases of straightforward and diffusion transport, and also their stitching together. Mean ranges 

of the particles along the coordinate are calculated and analyzed. Analytical formulas are derived for the 

particles backscattering coefficient in straightforward and diffusion approximations, and their dependence on 

the angle of incidence of the particles on the surface. Analytical formulas are derived for the particles mean 

energy loss in layers and mean energy of the particles backscattered from the layer of material, as well as their 

dependence on the particles angle of incidence on the surface. An analytical formula is derived for the reflection 

coefficient of the beam energy from the surface of the layer in the diffusion approximation for a wide range of 

materials, as well as its dependence on the particles angle of incidence on the surface. Analytical formulas are 

derived for the transmission coefficient of particles through a layer of material in the straightforward and 

diffusion approximations, and their dependence on the particles angle of incidence on the surface. The 

distributions of particles and energy deposition over the depth of the layer are obtained. The possibility of a 

spatial maximum of energy input of a particle beam is analytically justified, the depth of this maximum location 

is calculated, as well as its dependence on the particles angle of incidence on the surface. The applicability and 

error origin the of the analytical model of the transport of photons and accelerated particles through the layers 

of materials in the approximation of generalized diffusion are estimated. 

Keywords: accelerated particles, photons, generalized diffusion, straightforward transport, diffusion transport, 

mean range of the particles along the coordinate, the particles backscattering coefficient, the mean energy of 

the particles backscattered from the layer of material, the reflection coefficient of the beam energy from the 

surface of layer, the transmission coefficient of particles through the layer of material, particle and energy 

deposition distributions over the depth of the layer. 

 

 

 

 

 

 



Analytical Qualitative and Quantitative Model of the Transport of Photons and Accelerated Particles 

through Layers of Materials in the Generalized Diffusion Approximation. Mean Range, Backscattering 

and Transmission Coefficients, Energy of Backscattered Particles, Particle and Energy Distributions along 

the Coordinate, Angular Dependencies  

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page | 2 

the further problem by diffusion theory.  Nevertheless, it was not possible to get the analytical solution 

of the problem and to estimate the electron ranges along the coordinate and reflection coefficients in 

this work. One of the reasons for this was the limitations of diffusion approximation, since in many 

important problems the transport is not completely diffusive, and in some cases, it is almost 

straightforward. 

However, in the works performed at the Kurchatov Institute [3,4], it was possible to formulate the 

spatial-energy theory of the degradation-diffusion cascade and the model of generalized diffusion, 

which provide analytical solutions for a wide range of problems. In general, it gave the possibility to 

obtain solutions for the generalized diffusion of charged particles, atoms, and molecules in a wide range 

of initial energies. The transport problems of relativistic and nonrelativistic electron beams [3–8], 

physics of the upper atmosphere [4.8], and kinetics of the gamma laser [8,9] were considered. Later 

[10], it was possible to generalize the approach and to describe the transport of photons in transparent 

and nontransparent materials, typical for the problems of medical physics and optics, and also to 

calculate the volume reflection coefficient of particles from the materials in a straightforward 

approximation. Subsequently [11], a unified model of generalized diffusion for electrons and photons 

was formulated, including the concept of an imaginary particle source, which is located inside the layer 

and generates an isotropic particle flow in all directions. 

In this paper, a substantial qualitative and quantitative development of the generalized diffusion model 

is carried out in relation to the more general problem of the photons and accelerated particles transport 

through layers of materials. For the first time, more than a dozen formulas were derived to describe the 

backscattering and transmission of particles through layers of materials, as well as the reflection 

coefficient of the beam energy from a layer, and the distribution of particles and energy deposition over 

the depth of a layer. The dependences of the main transport parameters on the particles angle of 

incidence on the surface of the layer are obtained. 

2. TRANSPORT OF PHOTONS AND ACCELERATED PARTICLES IN THE GENERALIZED DIFFUSION      

APPROXIMATION 

We assume that in a layer of active material, fast particles usually undergo scattering and gradual 

deceleration, and photons undergo scattering and instant absorption. The transport of particles (photons 

and accelerated particles) in a layer of material in the generalized diffusion approximation is described 

by the ratio of the absorption length La and the transport mean free path Ls. The absorption length for 

accelerated particles is the mean path that a particle travels until its complete deceleration (absorption) 

due to inelastic collisions with atoms of the material. 

𝐿𝑎 = − ∫
𝑑𝐸

𝑑𝐸/𝑑𝑠

𝐸0

0
,                                                                                                                                                                              (1) 

where 𝑑𝐸/𝑑𝑠 = 𝑁 ∫ 𝜎(𝛥𝐸)𝛥𝐸𝑑(𝛥𝐸)
𝐸

0
 is the mean energy loss of a particle per unit path; E is the 

current value of kinetic energy; E0 is the initial energy of the particle; s is the current path; (E) is the 

total differential cross-section for energy loss of all channels of energy loss. The sign minus is 

introduced to take into account the fact that the particle energy decreases with an increase of the path: 

dE/ds < 0. In some cases, there is no need to calculate accurately the complex integral and we can use 

its estimation: 

𝐿𝑎 = −
𝐸0

𝑑𝐸/𝑑𝑠
.                                                                                                                                                                                      (2) 

To describe the photons transport, the absorption length can be associated with the linear absorption 

coefficient a, so in the simplest case [11]: 

La = 1/ a .                                                                                                                                                                                              (3) 

The transport mean free path (scattering length) is characterized by the distance at which the direction 

of motion of the particle changes significantly: 

𝐿𝑠 = (2𝜋𝑁 ∫ 𝜎(𝑐𝑜𝑠 𝛩)(1 −
1

−1
𝑐𝑜𝑠 𝛩)𝑑(𝑐𝑜𝑠 𝛩))

−1
,                                                                                                       (4) 
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where  (cos ) is the differential cross-section of all scattering channels. 

An analog of the transport mean free path for photons is determined by the linear scattering coefficient 

of photons s, as well as by the scattering anisotropy factor g (the average cosine of the angle of the 

elementary scattering event) [11], so that: 

𝐿𝑠 =
1

𝜇𝑠(1−𝑔)
=

1

𝜇𝑠
′.                                                                                                                                                                            (5) 

Here 𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔) is the transport scattering coefficient. 

The key parameter of the model is the diffusion ratio 

𝑅 =
𝐿𝑎

𝐿𝑠
=

𝜇𝑠(1−𝑔)

𝜇𝑎
.                                                                                                                                                                              (6) 

The form of the trajectory of particles motion is determined by the ratio of the absorption length and 

the scattering length. Indeed, in the case of R << 1, the particle will pass the absorption length and be 

absorbed by the material without noticeable curvature of its straightforward trajectory. Therefore, the 

mean range L along coordinate in this case is obviously equal to the absorption length: 

L = La.                                                                                                                                                                                                      (7) 

In the opposite limiting case R >> 1, the particle many times changes its direction of movement until 

the complete deceleration (absorption), and the transport is diffusive. It is significant that in the 

intermediate case the transport саn be analyzed in a following manner [2]. At the first stage, an initially 

monodirectional particle beam at a length Ls acquires a random directional motion. Finally, in the 

second stage, the transport becomes diffusive.  

In the case of R >> 1, the mean range L along the coordinate x corresponding to the direction of the 

initial velocity of the particle beam is calculated in the diffusion approximation [4]: 

𝐿 = √2𝐷𝑡 = √
2

3
𝐿𝑠𝐿𝑎,                                                                                                                                                                    (8) 

where D = 1/3 Lsv is the diffusion coefficient; t= La / v is the diffusion time; v is the particle velocity. 

The mean range in this case is close to the geometric mean value from the absorption length and the 

scattering length. 

However, even if the diffusion ratio is large, transport in the layer is not always described by the 

diffusion approximation. If the layer is thin (in the approximation of thin films) and its thickness is H 

< Ls, then, when passing through such a layer, the particle trajectory is almost straightforward. 

It is not difficult to estimate by dispersion the distributions of particles absorption length and energy 

deposition, etc. However, it must be emphasized that caution must be taken in estimating distributions. 

In particular, in some cases, estimates of diffusion distributions are not applicable for x<Ls, since at first 

the particles cannot move diffusely. In addition, in some cases, the model requires a more rigorous 

consideration of the role of boundary conditions in the system. In this sense, the most accurate are not 

differential, but integral parameters of the diffusion theory, such as the mean range L along coordinate. 

In general, the mean range L along coordinate can be calculated by stitching together the limiting cases: 

L = La for R ≤ 2/3;                                                                                                                                                                              (9) 

𝐿 = √(2/3)𝐿𝑎𝐿𝑠 for R > 2/3.                                                                                                                                                  (10) 

The resulting stitching is consistent within 10-30% over the entire range of diffusion ratios with the 

results of Monte Carlo calculations for the main cases. 

3. MEAN RANGE L ALONG COORDINATE AND DOSE CHARACTERISTICS OF NONRELATIVISTIC AND 

RELATIVISTIC ELECTRON BEAMS 

For consideration of an example of transport of accelerated electrons, the well-known formulas were 

used [8]. In the nonrelativistic case, the scattering length can be calculated by the formula 
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𝐿𝑠 =
2𝐸2

𝜋𝐾2𝑒4 ∑ 𝑁𝑖𝑍𝑖𝑖 (𝑍𝑖+1)(𝑙𝑛(1+1/𝜂𝑖)−1/(1+𝜂𝑖))
,                                                                                                                     (11) 

where each of the members of the sum correspond to a certain type of atoms of the material; K = 

1/(40); 0 is the electric constant; e is the electron charge; Ni and Zi are, respectively, the concentration 

and charge in units of e of atoms of type i;  𝜂𝑖 =
1

2
(

ℎ

2𝜋𝑚𝑣

1,12𝑍𝑖
1/3

0,855𝑎0
)2 - screening angle; h is Planck's 

constant; m is the mass of the electron; a0 is the Bohr radius. In this case, an elastic collision corresponds 

to a set of collisions, leading to a significant change in the direction of motion of a fast electron. 

The absorption length La(Е) is calculated using the Bethe formula: 

𝐿𝑎 = − ∫
𝑑𝐸
𝑑𝐸

𝑑𝑠

𝐸0

𝐸𝑚𝑖𝑛


𝐸0
2

4𝜋𝐾2𝑒4 ∑ 𝑁𝑖𝑍𝑖𝑖 (𝑙𝑛(4𝐸0/(𝐼0𝑍𝑖))
,                                                                                                                 (12) 

where s is the path of electron; I010 eV. Here, during integration, the logarithmic dependence on the 

integration parameter was neglected, as well as the contribution to the absorption length of the trajectory 

fragment corresponding to low energy values. 

Fig. 1 presents the nonrelativistic range L along coordinate calculated by using the model of generalized 

diffusion of electrons with an energy of 3-100 keV for characteristic materials with different charge 

numbers (Z = 2.7 - polyethylene, Z = 10 - quartz, Z = 33 - arsenic, Z = 82 - lead). At an energy less than 

3 keV, an error appears in the formulas due to the fact that they were derived for high energies exceeding 

I0 Z. At an energy greater than 100 keV, an error appears in the formulas due to the fact that the electron 

becomes relativistic. 

 

The analysis shows that, in the considered range of electron energies, the stitching of the straightforward 

and diffusion approximations of the generalized diffusion model takes place in the Z range from 2.6 (at 

high energies) to 3.6 (at low energies). Since the transition from one approximation to another is smooth, 

for most cases we can approximately assume that the transition from one approximation to another 

occurs at Z ≈ 3. The straightforward approximation works for smaller Z, and the diffusion 

approximation works for large Z. 

It is significant that, in accordance with the formulas, the mean range L along coordinate in the 

straightforward approximation is proportional to  

L ~ Z-1,                                                                                                                                                                                                  (13) 

while in the diffusion approximation 

L ~ Z-1,.5.                                                                                                                                                                                               (14) 

Note that the obtained data on the mean range L along coordinate on average within 10-30% are 

consistent with the experiments and calculations by the Monte Carlo method. Analysis shows that the 

function 
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                                                                                                                                                                        (15) 

weakly depends on the charge number Z = 1-82 (within ± 5%) and electron energy (within ± 20%), 

since this dependence is determined mainly by logarithms. Therefore, in the considered range of the 

charge number and energy with an accuracy of 20%, the diffusion ratio is given by the formula: 

R=f(Z+1),                                                                                                                                                                                            (16) 

where f≈0.16. 

The radiation dose D is determined by the radiation energy absorbed by a unit mass of a material, and 

can be related to the beam intensity I (measured in J/cm2), the mean range L along coordinate, and the 

material density ρ by the formula: 

.                                                                                                                                                                                              (17) 

The product Lρ  in accordance with (13, 14) weakly depends on the material, so that in the diffusion 

approximation (qualitatively valid for almost the entire Mendeleev periodic table) proportionality is 

observed: 

D ~ Z0,5.                                                                                                                                                                                                (18) 

This dependence becomes even weaker when you consider that in heavy nuclei the proportion of 

neutrons in the nucleus increases, and the mass of the nucleus increases faster than the charge. 

Let us consider a typical example [12,13], when an electron stream with an energy of 30 keV can appear 

during separation of an adhesive tape, and 1010 electrons enter per cm2 of surface. The stitching of the 

straightforward and diffusion approximations at this energy takes place for the charge number of the 

nucleus of atoms Z = 2.8, which is close to the average charge number of the nucleus of atoms of 

polyethylene (Z = 2.7). The model of generalized diffusion in this case gives the mean range of the 

electron (in the straightforward approximation) L = 12.9 μm. The material receives energy 4,8·10-5 

J/cm2 per volume of 1,29·109 m3. For polyethylene with a density of 920 kg/m3 this gives a considerable 

radiation dose of 40 Gray. 

On the whole, the dependence of the dose for characteristic material s on the electron energy (for a fixed 

flux of 1010 electrons per cm2) is shown in Fig. 2. 

 

It follows from this that the radiation dose when separation off adhesive tapes from various materials 

(and, possibly, when breaking and tearing of other materials) can exceed the natural radiation dose per 
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year by up to 4 or more orders of magnitude. Such powerful doses can lead to chemical destruction of 

the micro- and nanolayer of the material and provide, for example, damage to an electronic device or 

biological object. 

In the relativistic electrons case, we have: 

𝐿𝑠 =
𝑚2𝑐4𝛽4𝛾2

2𝜋𝐾2𝑒4 ∑ 𝑁𝑖𝑍𝑖𝑖 (𝑍𝑖+1)(𝑙𝑛(1+1/𝜂𝑖)−1/(1+𝜂𝑖))
,                                                                                                                  (19) 

𝐿𝑎 =
𝑚2𝑐4𝛽2(𝛾−1)

4𝜋𝐾2𝑒4 ∑ 𝑁𝑖𝑍𝑖𝑖 (𝑙𝑛(2𝑚𝑣2𝛾2/(𝐼0𝑍𝑖))−𝛽2)
.                                                                                                                           (20) 

In these formulas,  = v/с, where c is the speed of light,  = 1 / (1 -  2 )1/2, 𝜂𝑖 =
1

2
(

ℎ

2𝜋𝑚с𝛽𝛾

1,12𝑍𝑖
1/3

0,855𝑎0
)2. 

For electrons in the energy range from units of keV to units of MeV 

𝑅 = 𝑐𝑜𝑛𝑠𝑡
𝑍+1

𝛾
,                                                                                                                                                                                (21) 

where the constant is half an order of magnitude less than unity, γ is the relativistic factor, Z is the 

charge number of the nucleus of the atoms of the material. Estimates show that the straightforward 

approximation takes place for materials with Z = 1-3, the diffusion one for Z > 10  20. (This statement 

is valid in a wide range of electron beam energies, starting from a few keV. And only for relativistic 

electrons at Е > т с2, when the mean range L is proportional to the first and not the second power of 

energy, the trajectory of the electrons is somewhat straightened.) 

It follows from the formulas that the mean range L of nonrelativistic fast electrons is proportional to the 

square of their initial energy.  

In the relativistic case, if the material consists of light atoms, the mean range L is proportional to the 

first power of energy. If the material consists of heavy atoms, due to the influence of elastic collisions, 

the mean range L is proportional to the initial energy to the power of 3/2. 

The formulas confirm that for light atoms the range L is proportional to Z -1, and for heavy ones it 

decreases even faster and is proportional to Z -3/2. 

4. TRANSPORT OF PARTICLES IN A LAYER OF MATERIAL IN A STRAIGHTFORWARD APPROXIMATION 

The generalized diffusion model allows one to make estimates of the particles backscattering coefficient 

from various materials. Thus, in the model of diffusion transport, dominant scattering leads to large 

backscattering coefficients close to unity. On the contrary, in the model of straightforward transport, a 

small probability of scattering leads to backscattering coefficients much less than unity. 

We start with the calculation of the particles backscattering coefficient from a thick layer of material in 

a straightforward approximation. 

We first make an estimate for the beam normally incident on the layer. In the case of straightforward 

transport of particles, when R << 1, the probability of particle scattering is small compared with the 

probability of absorption and is determined by 𝑅 =
𝐿𝑎

𝐿𝑠
. It must be taken into account that a particle can 

only return back to the layer boundary from a depth of La /2, so that the probability of scattering at this 

length is 
𝐿𝑎

2𝐿𝑠
.. Moreover, taking into account the approximately equal (50 percent) probability of particle 

scattering back and forth, we obtain a somewhat overestimated estimate for the particles backscattering 

coefficient: 

Kr 0,25R.                                                                                                                                                                                           (22) 

The overestimation of the estimate is due to the fact that far from all particles from such a depth are 

able to reach the layer boundary. 

The method of diagrams allows to obtain more accurately the particles backscattering coefficient in a 

straightforward approximation. We generalize the problem, assuming that in the general case the beam 
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falls at an arbitrary angle to the boundary of the surface of the layer. 

The model for calculating the particles backscattering coefficient is illustrated by the diagram in Fig. 3. 

The particle passes the boundary of the layer FE at the point D (chosen as the origin) in the direction 

DO (direction x) at an angle α to the boundary of the layer FE and is capable of linearly passing the 

absorption length 𝐿𝑎. In this case, there is a small probability that at some point O on the interval of the 

path dx there will be an isotropic scattering of the particle, so that the particle will eventually slow down 

on the surface of the sphere 𝐹𝑀𝐸𝑀1.. The relative probability of isotropic scattering of a particle along 

the absorption length 𝐿𝑎. is determined by the diffusion ratio R = 𝐿𝑎/𝐿𝑠, so that on the interval of the 

path, the probability of a particle returning to the boundary is equal to: 

𝑑𝑝 =
𝑑𝑥

𝐿𝑎

𝑆FME

𝑆𝐹𝑀𝐸𝑀1

𝑅 =
𝑑𝑥

𝐿𝑠

𝑆FME

𝑆𝐹𝑀𝐸𝑀1

.                                                                                                                                               (23) 

 

Fig. 3 

(The ratio of the area of the FME segment to the surface area of the sphere 𝐹𝑀𝐸𝑀1  characterizes the 

relative probability of particle reflection.) Let us find the maximum mean free path of the particle DO 

in material, determined by the ability of the reflected particle to reach the boundary of the layer at point 

A: 

DO+OA=DO(1+cosα)= 𝐿𝑎,                                                                                                                                                     (24) 

Where the maximum is 

DO=𝐿𝑎/(1+cosα).                                                                                                                                                                           (25) 

Integration of the obtained probability within the permissible range from zero to DO gives for the total 

probability of the particle returning from the layer the particles backscattering coefficient (the notations 

of the radius of the sphere OE = r and the segment height MA = h are introduced): 

𝑘𝑟 =
1

𝐿𝑠
∫

𝑆FME

𝑆𝐹𝑀𝐸𝑀1

𝑑𝑥
𝐿𝑎/(1+cosα)

0
=

1

𝐿𝑠
∫

2𝜋𝑟ℎ

4𝜋𝑟2 𝑑𝑥
𝐿𝑎/(1+cosα)

0
=

1

𝐿𝑠
∫

ℎ

2𝑟
𝑑𝑥

𝐿𝑎/(1+cosα)

0
=

1

2𝐿𝑠
∫

𝐿𝑎−𝑥(1+ cosα)

𝐿𝑎−𝑥
𝑑𝑥

𝐿𝑎/(1+cosα)

0
=

1

2𝐿𝑠
∫ 𝑑𝑥

𝐿𝑎/(1+cosα)

0
−

1

2𝐿𝑠
∫

𝑥 cosα

𝐿𝑎−𝑥
𝑑𝑥

𝐿𝑎
1+cosα

0
=

𝑅

2(1+cosα)
+

cosα

2𝐿𝑠
∫ 𝑑𝑥

𝐿𝑎
1+cosα

0
−

cosα

2𝐿𝑠
∫

𝐿𝑎

𝐿𝑎−𝑥
𝑑𝑥

𝐿𝑎
1+cosα

0
=

𝑅

2
+

𝑅cosα

2
∫

1

𝐿𝑎−𝑥
𝑑𝑥

𝐿𝑎
1+cosα

0
=

𝑅

2
−

𝑅cosα

2
𝑙𝑛

1+cosα

cosα
=

(1−cosα 𝑙𝑛
1+cosα

cosα
)𝑅

2
.                                   (26) 

It is taken into account that the maximum mean free path of a particle in a material is 𝐿𝑎 and 

DO+OF=x+r=𝐿𝑎, 

where from 

r=𝐿𝑎-x.                                                                                                                                                                                                 (27) 



Analytical Qualitative and Quantitative Model of the Transport of Photons and Accelerated Particles 

through Layers of Materials in the Generalized Diffusion Approximation. Mean Range, Backscattering 

and Transmission Coefficients, Energy of Backscattered Particles, Particle and Energy Distributions along 

the Coordinate, Angular Dependencies  

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page | 8 

In addition, it is taken into account that 

MA+AO=h+x cosα=r=𝐿𝑎-x, 

where from 

h=𝐿𝑎-x(1+ cosα).                                                                                                                                                                            (28) 

If the particle beam falls on the layer normally and α = 0, the formula for the particles backscattering 

coefficient equal to the ratio of the number of reflected particles 𝐼2 to the number of particles 𝐼0falling 

on the layer is simplified and looks as follows: 

𝑘𝑟 =
𝐼2

𝐼0
=

(1−𝑙𝑛2)𝑅

2
= 0,153𝑅.                                                                                                                                                 (29) 

For nonrelativistic electrons with an energy of 3-100 keV in materials with a charge number Z in 

accordance with (16), the particles backscattering coefficient is equal to: 

𝑘𝑟 =0,024(Z+1).                                                                                                                                                                             (30) 

To verify the obtained formula (29), the particles backscattering coefficient was calculated by the Monte 

Carlo method. A comparison of the dependence of the particles backscattering coefficient from 

materials with different diffusion ratios is shown in Fig. 4 and 5 (on a more detailed scale). From a 

comparison of the graphs, it can be seen that the dependences are of the same qualitative nature up to a 

100% coefficient. The best match occurs for R << 1, which is not surprising, since the zeroth 

approximation of the calculation is based on the straightforward approximation. However, for example, 

even at R = 1, the difference does not exceed 15%. 

In some cases, it is important to know which part of the particles passes through a given of thickness x 

in a straightforward approximation - to find the particle transmission coefficient 𝑘𝑡. For photons, such 

an estimate can be made using the Bouguer-Lambert law [14]: 

𝑘𝑡 =
𝐼1

𝐼0
=exp(-μх).                                                                                                                                                                            (31) 

Here 𝐼1 is the number of particles passing through the layer, and it is assumed for simplicity that the 

particles normally fall onto the layer. 

In the case of transport of accelerated particles, another model works, because, as noted above, the 

deceleration of particles in the material occurs gradually. Moreover, in the estimation, we can assume 

that for a layer of thickness H<𝐿пcosα, the main part of the particles passes through this layer, and for 

a layer of thickness H>𝐿пcosα the main part of the particles is not able to overcome this layer. 

 

Fig. 4 
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5. AN IMAGINARY ISOTROPIC SOURCE OF PARTICLES. BACKSCATTERING AND TRANSMISSION OF 

PARTICLES IN THE DIFFUSION APPROXIMATION 

A model with an imaginary isotropic source of particles, which is located at a depth of the scattering 

length, helps to describe transport in the case when the diffusion approximation works (Fig. 6). In this 

model, it is assumed that at the first stage of transport at the scattering length Ls, the initially 

unidirectional particle beam is isotropized, and at the second stage, the problem is reduced to 

considering particle transport from an imaginary isotropic particle source. In fig. 6, for simplicity, it is 

first assumed that the particles fall normally onto the layer. 

Let us now analyze the process of backscattering (volume reflection) of particles from a layer of 

material in the diffusion approximation using the example of an electron beam. To describe this process, 

we use an illustration (Fig. 7) that looks similar to an illustration of a straightforward approximation, 

but essentially describes a completely different mechanism. 

Consider the electrons incident on the boundary of the layer FE in the direction of DO at an angle α to 

the layer. By passing the scattering length (transport mean free path) Ls = DO, the electron beam 

becomes isotropic. Moreover, the depth of isotropization is equal to Li = AO = 𝐿𝑠 cosα. Point O can be 

considered as the source of an imaginary internal isotropic electron beam. Then, in the diffusion 

approximation, isotropic diffusion proceeds from point O at the mean range of electrons along the 

coordinate 𝐹𝑂 = 𝐿 = √
2

3
𝐿𝑠𝐿𝑎 before the absorption of electrons on the surface of the sphere FMEM1. 

The exit of electrons to the boundary of the layer FE actually means their backscattering from the layer. 

Therefore, in the diffusion approximation, it is possible to estimate the backscattering coefficient of 

electrons (the fraction of reflected electrons) from the layer by the ratio of the segment FME area to the 

area of the entire sphere FMEM1. With this in mind, the backscattering coefficient of electrons from the 

layer according to the proposed estimate is equal to 

𝑘𝑟 =
𝑆𝐹𝑀𝐸

𝑆𝐹𝑀𝐸𝑀1
=

2π 𝐹𝑂 𝑀𝐴

4π 𝐹𝑂2 =
√

2

3
𝐿𝑠𝐿𝑎−𝐿𝑠 cos 𝛼

2√
2

3
𝐿𝑠𝐿𝑎

=
1

2
−

cos 𝛼

2√
2

3
𝑅

 .                                                                                             (32) 

Such an estimate will be somewhat underestimated, since the access of electrons onto a sphere segment 

FME in principle does not guarantee that they will not reach the boundary FE of the layer with exit 

from the layer. An error can also take place due to the limited number of diffusion collisions determined 

by the diffusion ratio R = La/Ls, which is about 10 for medium and heavy atoms. 

Let us make an estimate for the electron flow normally incident on the layer boundary. For titanium (R 

= 4.33) 𝑘𝑟=0.21, which is almost 20% lower than the experimental one [15-16]. 

For 

R=0.16(Z+1), 

𝑘𝑟 =
1

2
−

cos 𝛼

0.653√𝑧+1
.                                                                                                                                                                        (33) 

In many real-life problems, it is apparently possible to use the analytical formulas given here to describe 

the impact of a beam with an uneven surface, having previously correctly estimated the average angle 

of incidence of electrons on a surface with correctly averaged coordinates. 

A similar approach allows us to estimate the transmission coefficient of particles through the layer (the 

fraction of transmitted particles). After all, Fig. 6 is quite symmetrical with respect to the imaginary 

isotropic source of particles, the upper and lower boundaries of the layer from the point of view of 

diffusion transport have no special differences and the transmission coefficient of particles is calculated 

almost similar to the backscattering coefficient of particles. In this case, the exit of particles to the lower 

boundary F1E1 of the layer actually means their transmission through the layer. Therefore, in the 
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diffusion approximation, the transmission coefficient of particles through the layer can be estimated by 

the ratio of the area of the segment F1M1E1 of the sphere to the area of the entire sphere FMEM1: 

𝑘𝑡 =
𝑆𝐹1𝑀1𝐸1

𝑆𝐹𝑀𝐸𝑀1

=
2π 𝐹𝑂 𝐴1𝑀1

4π 𝐹𝑂2 =
√

2

3
𝐿𝑠𝐿𝑎−𝐻+𝐿𝑠 cos 𝛼

2√
2

3
𝐿𝑠𝐿𝑎

 .                                                                                                           (34) 

Here, it is taken into account that the layer thickness H=AA1 allows one to find 

A1M1=2√
2

3
𝐿𝑠𝐿𝑎-H- 𝑀𝐴=√

2

3
𝐿𝑠𝐿𝑎- H+𝐿𝑠 cos 𝛼.                                                                                                            (35) 

6. THE MEAN ENERGY LOSS OF THE BACKSCATTERED PARTICLES AND THE REFLECTION COEFFIC

IENT OF THE BEAM ENERGY 

As an example, consider the transport of accelerated nonrelativistic electrons. We make some 

preliminary remarks. The scattering length is inversely proportional to the square of the charge number 

of the atom of the material, and the absorption length is inversely proportional to the charge number. 

Therefore, as we move from lighter atoms to heavier ones, the imaginary source becomes closer to the 

surface of the layer, the electron energy of the imaginary source becomes closer to the initial energy of 

the beam electrons and the energy of the backscattered electrons also becomes closer to the initial 

energy. 

Let us estimate the mean energy loss of the backscattered electron by the transport time of the 

backscattered electron in the material (Fig. 7): 

∆𝐸 =
𝑑𝐸

𝑑𝑡
𝑡 =

𝑑𝐸

𝑑𝑥
𝑣𝑡 ≈

𝐸0

𝐿𝑎
𝑣𝑡.                                                                                                                                                       (36) 

In the first part DO of motion of initially unidirectional beam electrons, we can estimate their motion 

as straightforward, so that here the mean energy loss is equal to 

∆𝐸1 =
𝐸0

𝐿𝑎
𝑣

𝐿𝑠

𝑣
=

𝐸0

𝑅
.                                                                                                                                                                        (37) 

It is logical to assume that the bulk of the backscattered electrons is generated by an isotropic internal 

source electron in the upper hemisphere. In the simplest estimate, in a straightforward approximation, 

the time of electron return to the layer boundary is equal to 
𝐿𝑠 cos 𝛼

𝑣
, and the energy loss on the way back 

is equal to 

∆𝐸2 =
𝐸0

𝐿𝑎
𝑣

𝐿𝑠 cos 𝛼

𝑣
=

𝐸0 cos 𝛼

𝑅
.                                                                                                                                                    (38) 

The total energy loss is equal to 

∆𝐸 =
𝐸0(1+cos 𝛼)

𝑅
.                                                                                                                                                                            (39) 

The fraction of energy loss is equal to 

𝛿 =
∆𝐸

𝐸0
=

1+cos 𝛼

𝑅
.                                                                                                                                                                            (40) 

For titanium and a beam with an initial electrons energy of 100 keV (R = 4.33) for cos 𝛼 = 1, δ=46% 

(the empirical formula [16] gives δ=40% for silicon). For gold, δ = 13% (the empirical formula [16] 

gives δ = 20%). 

The obtained formulas for the mean energy loss of the backscattered electron assumed the use of a 

diffusion model with an imaginary source of electrons, but considered the transport of electrons up and 

down as straightforward. Such an approximation gives a good qualitative and quantitative estimate for 

a wide range of materials with R >> 1. 

Another variant for estimating the energy loss of a backscattered electron is based on a diffusive upward 

transport of the backscattered electrons, because (in contrast to the downward) this transport is provided 

by an isotropic electron source. Obviously, this model works for large R when the backscattered electron 



Analytical Qualitative and Quantitative Model of the Transport of Photons and Accelerated Particles 

through Layers of Materials in the Generalized Diffusion Approximation. Mean Range, Backscattering 

and Transmission Coefficients, Energy of Backscattered Particles, Particle and Energy Distributions along 

the Coordinate, Angular Dependencies  

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page | 12 

has energy for diffusion transport. In the diffusion approximation, the time of electron return to the 

layer boundary is equal to 

𝑡𝑑 =
𝐿𝑖

2

1

3
𝐿𝑠𝑣

=
3𝐿𝑠cos2𝛼

𝑣
,                                                                                                                                                                    (41) 

and the energy loss on the way back is equal to 

∆𝐸2𝑑 =
𝐸0

𝐿𝑎
𝑣

3𝐿𝑠cos2𝛼

𝑣
=

3𝐸0cos2𝛼

𝑅
.                                                                                                                                           (42) 

Total energy loss is equal to 

∆𝐸𝑑 =
𝐸0(1+3cos2𝛼)

𝑅
.                                                                                                                                                                      (43) 

Thus, for cos 𝛼 = 1  

∆𝐸𝑑 = 2∆𝐸.                                                                                                                                                                                      (44) 

For titanium (R = 4.33) for cos 𝛼 = 1, δ=92% (which differs markedly from the empirical 40%). The 

large error here can be explained by the fact that, as noted above, for small R the diffusion transport is 

not good, since during diffusion upward along the curved path, almost all the energy of the electrons is 

lost and they fail to exit the layer. Therefore, only that part of the electrons that moves almost 

straightforward is actually backscattered. For gold (R = 15), diffusion transport can take place and δ = 

26% (which coincides well with the empirical 20%). 

We conclude that the last formulas for the mean energy loss of the backscattered electron assumed the 

use of a diffusion model with an imaginary source of electrons, but considered the movement of 

electrons down as straightforward and up as diffusion. Such an approximation gives a good qualitative 

and quantitative estimate for the electron backscattering only for materials of heavy atoms. 

Thus, the straightforward approximation for upward moving of electrons works in a wider range of 

materials. Therefore, the energy reflection coefficient of electrons (fraction of reflected energy) from 

the layer will be estimated by the formula: 

𝑘𝐸 = 𝑘𝑟(1 − 𝛿) = (
1

2
−

cos 𝛼

2√
2

3
𝑅

)(
𝑅−1−cos 𝛼

𝑅
).                                                                                                                       (45) 

For titanium (R = 4.33) for cos 𝛼 = 1, 𝑘𝐸 = 0.21 × 0.54 = 0.113, which is 30% lower than the 

empirical, but on the whole it can be considered as satisfactory agreement for such a complex process. 

Especially important is the qualitative agreement of the analytical formula with the real process. 

7. THE DISTRIBUTIONЫ ALONG THE LAYER DEPTH OF THE PARTICLES AND OF THE BEAM ENERGY 

INPUT 

The distribution of the particles along the layer depth x during diffusion as a random process is estimated 

by the Gaussian distribution. In the diffusion approximation, this distribution is determined mainly by 

the internal source of particles and has a maximum at x = Li: 

𝑓(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥−𝜇)2

2𝜎2 ) =
1

√4/3𝜋𝐿𝑠𝐿𝑎
exp (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠𝐿𝑎
).                                                                          (46) 

Here, the expectation 𝜇= 𝐿𝑠 cos 𝛼, the dispersion σ =√
2

3
𝐿𝑠𝐿𝑎, 𝐿𝑠 = 𝐿𝑠(

𝐸0

√2
), 𝐿𝑎 = 𝐿𝑎(𝐸0). Note that far 

from the maximum, this distribution gives an error, for example, because the particles are not able to 

penetrate the layer at a distance greater than the absorption length 𝐿𝑎. 

The distributionы along the layer depth of the beam energy input near the maximum can be considered 

proportional to the distribution of particles. Far from the maximum, this estimation also gives an error/ 

However, this error due to small energy input in this place is usually insignificant. 

The backscattering coefficient of particles from the layer can be calculated using (46) and is based on 

the fraction of particles backscattered from the layer: 
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𝑘𝑟𝑑 =
1

√2𝜋𝜎
∫ 𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2 )
0

−∞
𝑑𝑥 =

1

√4/3𝜋𝐿𝑠𝐿𝑎
∫ 𝑒𝑥𝑝 (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠𝐿𝑎
)

0

−∞
𝑑𝑥.                                           (47) 

This coefficient, calculated with the help of the differential distribution of particles, obviously behaves 

similarly to estimate (32), calculated with the help of the integral mean range of particles. In this case, 

the determination of the advantages and disadvantages of each of the estimates requires comparing them 

with experimental and numerical data. 

The energy coefficient of reflection of particles from the layer in the differential approximation will be 

estimated similarly to formula (45): 

𝑘𝐸𝑑 = 𝑘𝑟(1 − 𝛿) =
1

√4/3𝜋𝐿𝑠𝐿𝑎
∫ 𝑒𝑥𝑝 (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠𝐿𝑎
)

0

−∞
𝑑𝑥 (

𝑅−1−cos 𝛼

𝑅
).                                                       (48) 

The fraction of unreflected particles in the material is 𝑘𝑟𝑑and is described by the function f(x) for x> 0. 

Each particle gave an energy input to the material 𝐸0, so that the total energy input of this fraction is 

equal to 𝐸0(1 − 𝑘𝑟𝑑). 

The fraction of reflected particles is 𝑘𝑟𝑑. Moreover, each particle gave an energy input to the material 

𝛿𝐸0, so that the total energy input of this fraction is 𝛿𝐸0𝑘𝑟𝑑 .. 

As a result, due to the reflected particles, the energy input into the material is increased by 𝐾𝑟 times, 

where 

𝐾𝑟 =
𝐸0(1−𝑘𝑟𝑑)+𝛿𝐸0𝑘𝑟𝑑

𝐸0(1−𝑘𝑟𝑑)
=

1−𝑘𝑟𝑑+𝛿𝑘𝑟𝑑

1−𝑘𝑟𝑑
.                                                                                                                                  (49) 

Therefore, considering the contribution of reflected particles to the energy input to the material as a 

correction, we will estimate the distribution of the energy input over the depth of the layer per one 

particle of the beam according to the formula 

𝑓𝐸𝑑(𝑥) = 𝐾𝑟𝐸0𝑓(𝑥) =
1−𝑘𝑟𝑑+𝛿𝑘𝑟𝑑

1−𝑘𝑟𝑑

𝐸0

√4/3𝜋𝐿𝑠𝐿𝑎
exp (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠𝐿𝑎
).                                                                   (50) 

It is possible to calculate the above characteristics on the basis of derived above reflection coefficient 

of particles from the material 𝑘𝑟 =
1

2
−

cos 𝛼

2√
2

3
𝑅

.. 

In this case, the fraction of unreflected particles in the material is equal to 1-𝑘𝑟 and is described by the 

function f(x) for x> 0. In addition, each particle gave an energy input to the material 𝐸0, so that the total 

energy input of this fraction is equal to 𝐸0(1 − 𝑘𝑟). 

The fraction of reflected particles is 𝑘𝑟. Each particle gave an energy input to the material 𝛿𝐸0, so that 

the total energy input of this fraction is 𝛿𝐸0𝑘𝑟 

As a result, due to the reflected particles, the energy input to the material is increased by 𝐾𝑟 times, 

where, by analogy with (49) 

𝐾𝑟 =
𝐸0(1−𝑘𝑟)+𝛿𝐸0𝑘𝑟

𝐸0(1−𝑘𝑟)
=

1−𝑘𝑟+𝛿𝑘𝑟

1−𝑘𝑟
.                                                                                                                                           (51) 

Therefore, considering the contribution of reflected particles to the energy input to the material as a 

correction, we will estimate the distribution of the energy input of the beam over the depth per one 

particle of the beam by analogy with (50, 33) by the formula 

𝑓𝐸(𝑥) = 𝐾𝑟𝐸0𝑓(𝑥) =
1−𝑘𝑟+𝛿𝑘𝑟

1−𝑘𝑟

𝐸0

√4/3𝜋𝐿𝑠𝐿𝑎
exp (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠𝐿𝑎
).                                                                         (52) 

The last formula is simpler and more analytical than the formula for 𝑓𝐸𝑑(𝑥), and therefore is better 
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suited for optimization problems. However, it is based on the integral characteristic 𝑘𝑟, and not the 

differential 𝑘𝑟𝑑, and therefore, in some cases, may have less accuracy. 

It is significant that the formulas for 𝑓𝐸𝑑(𝑥) and  и 𝑓𝐸(𝑥) are derived in the diffusion approximation 

when the loss of electron energy over the isotropization length is neglected under the assumption 𝐿𝑠 ≪

𝐿𝑎. Taking this loss into account refines the formulas, in a first approximation it leads to a narrowing 

of the Gaussian bell and can be done by replacing 𝐿 = √
2

3
𝐿𝑠𝐿𝑎  with √

2

3
𝐿𝑠(𝐿𝑎 − 𝐿𝑠). In this case, the 

final formulas for the distribution of energy input in the layer are as follows: 

𝑓𝐸𝑑(𝑥) =
1−𝑘𝑟𝑑+𝛿𝑘𝑟𝑑

1−𝑘𝑟𝑑

𝐸0

√4/3𝜋𝐿𝑠(𝐿𝑎−𝐿𝑠)
exp (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠(𝐿𝑎−𝐿𝑠)
),                                                                                      (53) 

𝑓𝐸(𝑥) =
1−𝑘𝑟+𝛿𝑘𝑟

1−𝑘𝑟

𝐸0

√4/3𝜋𝐿𝑠(𝐿𝑎−𝐿𝑠)
exp (−

3(𝑥−𝐿𝑠 cos 𝛼)2

4𝐿𝑠(𝐿𝑎−𝐿𝑠)
).                                                                                            (54) 

8. CONCLUSION 

Thus, an analytical model of generalized diffusion is consistently formulated in the work, based on the 

stitching of diffusion and straightforward approximations. The model allowed calculating, in a wide 

range of particle energies and parameters of the materials, the mean range along the coordinate of 

accelerated particles and photons, the backscattering coefficient of particles, the mean energy of 

particles backscattered from a layer of material, the reflection coefficient of the beam energy from the 

surface of the material, the transmission coefficient of particles through the layer of material, and also 

estimate the distribution of particles and energy deposition over the depth of the layer. 

The obtained formulas allow a good understanding of the physical picture of the transport of photons 

and accelerated particles through the layers of materials. In addition, they are generally satisfactorily 

qualitatively and quantitatively consistent with the experiment and Monte Carlo calculations for such 

complex processes. Particularly important is the qualitative coordination of analytical formulas with the 

real picture of processes, which provides optimization opportunities for important modern problems in 

the field of new technologies, medical physics, electron microscopy, etc.  
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