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1. INTRODUCTION 

First observation the phenomena of creation polygonal forms in heated liquid was made by count 

Rumford in 1797 [1-3]. In 1870, the Irish-Scottish physicist and engineer James Thomson, observed 

water cooling in a tub; he noted that the soapy film on the water's surface was divided as if the surface 

had been tiled (tesselated). In 1882, he showed that the tesselation was due to the presence of 

convection cells [4]. In 1900, the French physicist Henri Bénard independently arrived at the same 

conclusion [5, 6]. This pattern of convection, whose effects are due solely to a temperature gradient, 

was first successfully analyzed in 1916 by Lord Rayleigh [1, 3, 6-8]. Rayleigh assumed boundary 

conditions in which the vertical velocity component and temperature disturbance vanish at the top and 

bottom boundaries (perfect thermal conduction). Those assumptions resulted in the analysis losing 

any connection with Henri Bénard's experiment. This resulted in discrepancies between theoretical 

and experimental results until 1958, when J. Pearson reworked the problem based on surface tension 

[9]. This is what was originally observed by Bénard. Nonetheless in modern usage "Rayleigh–Bénard 

convection" refers to the effects due to temperature, whereas "Bénard–Marangoni convection" refers 

specifically to the effects of surface tension. Davis and Koschmieder have suggested that the 

convection should be rightfully called the "Pearson–Bénard convection". Rayleigh–Bénard convection 

is also sometimes known as "Bénard–Rayleigh convection", "Bénard convection", or "Rayleigh 

convection" [10-16]. 

The experimental set-up uses a layer of liquid, e.g. water, between two parallel planes. The height of 

the layer is small compared to the horizontal dimension. At first, the temperature of the bottom plane 

is the same as the top plane [1, 6]. The liquid will then tend towards an equilibrium, where its 

temperature is the same as its surroundings. (Once there, the liquid is perfectly uniform: to an 

observer it would appear the same from any position. This equilibrium is also asymptotically stable: 

after a local, temporary perturbation of the outside temperature, it will go back to its uniform state, in 

line with the second law of thermodynamics). 

Then, the temperature of the bottom plane is increased slightly yielding a flow of thermal energy 

conducted through the liquid. The system will begin to have a structure of thermal conductivity: the 

temperature, and the density and pressure with it, will vary linearly between the bottom and top plane. 

A uniform linear gradient of temperature will be established.  

Once conduction is established, the microscopic random movement spontaneously becomes ordered 

on a macroscopic level, forming Benard convection cells, with a characteristic correlation length. 
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The experimental set-up uses a layer of liquid, e.g. water, between two parallel planes. The height of 

the layer is small compared to the horizontal dimension. At first, the temperature of the bottom plane 

is the same as the top plane. The liquid will then tend towards an equilibrium, where its temperature is 

the same as its surroundings. (Once there, the liquid is perfectly uniform: to an observer it would 

appear the same from any position. This equilibrium is also asymptotically stable: after a local, 

temporary perturbation of the outside temperature, it will go back to its uniform state, in line with the 

second law of thermodynamics). 

The rotation of the cells is stable and will alternate from clock-wise to counter-clockwise horizontally; 

this is an example of spontaneous symmetry breaking. Bénard cells are metastable. This means that a 

small perturbation will not be able to change the rotation of the cells, but a larger one could affect the 

rotation; they exhibit a form of hysteresis. 

Moreover, the deterministic law at the microscopic level produces a non-deterministic arrangement of 

the cells: if the experiment is repeated, a particular position in the experiment will be in a clockwise 

cell in some cases, and a counter-clockwise cell in others. Microscopic perturbations of the initial 

conditions are enough to produce a non-deterministic macroscopic effect. That is, in principle, there is 

no way to calculate the macroscopic effect of a microscopic perturbation. This inability to predict 

long-range conditions and sensitivity to initial-conditions are characteristics 

of chaotic or complex systems (i.e., the butterfly effect) [1, 3, 6, 9-17]. 

If the temperature of the bottom plane was to be further increased, the structure would become more 

complex in space and time; the turbulent flow would become chaotic. 

Convective Bénard cells tend to approximate regular right hexagonal prisms, particularly in the 

absence of turbulence, although certain experimental conditions can result in the formation of regular 

right square prisms or spirals. 

The convective Bénard cells are not unique and will usually appear only in the surface tension driven 

convection. In general the solutions to the Rayleigh and Pearson analysis (linear theory) assuming an 

infinite horizontal layer gives rise to degeneracy meaning that many patterns may be obtained by the 

system. Assuming uniform temperature at the top and bottom plates, when a realistic system is used (a 

layer with horizontal boundaries) the shape of the boundaries will mandate the pattern. More often 

than not the convection will appear as rolls or a superposition of them. 

Since there is a density gradient between the top and the bottom plate, gravity acts trying to pull the 

cooler, denser liquid from the top to the bottom. This gravitational force is opposed by the viscous 

damping force in the fluid. The balance of these two forces is expressed by a non-dimensional 

parameter called the Rayleigh number. The Rayleigh number is defined as [1-3]: 

4 ,
g

Ra d



                                                                                                                                          (1) 

where g denotes the acceleration due to gravity, d the depth of the layer, dT
dz

   the uniform 

adverse temperature gradient which is maintained, and ,   and   are the coefficients of volume 

expansion, thermometric conduictivity and kinematic viscosity, respectively [1, 2].  

As the Rayleigh number increases, the gravitational forces become more dominant. At a critical 

Rayleigh number of 1708, instability sets in and convection cells appear. 

The critical Rayleigh number can be obtained analytically for a number of different boundary 

conditions by doing a perturbation analysis on the linearized equations in the stable state. The 

simplest case is that of two free boundaries, which Lord Rayleigh solved in 1916, obtaining Ra = 
27⁄4 π4 ≈ 657.51. In the case of a rigid boundary at the bottom and a free boundary at the top (as in the 

case of a kettle without a lid), the critical Rayleigh number comes out as Ra = 1100.65 [1, 6]. 

Further development of problem of hydrodynamic stability was made by S. Chandrasekar in magnetic 

hydrodynamics. These results allow explaining the basic peculiarities of generation the Sun spots and 

its dynamics [1]. 

Model of polygonal forms Thomson-Benard cells was created by H. Haken [12]. 
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The theory of Thomson-Benard phenomena for electron gas in semiconductors was created and 

developed by V. Bonch-Bruevich and A. Temchin [18-21]. 

Roughly speaking the Thomson-Benard phenomena is hydrodynamical effect, which is generarated 

on the early stage of formation the hydrodynamical vortexes. It is“soft” effect. Therefore for the 

observation this phenomenon we must select slow regime of laser-induced melting the irradiated 

matter. This should be a relatively long-term process, which would include the melt of the irradiated 

material, its heating, and the initiation of convective fluid motion. We believe that the most suitable 

laser irradiation regimes can be continuous, millisecond and microsecond irradiation regimes [3, 22-

28]. Silicon, germanium and titanium were selected as possible materials. A comparative analysis 

with the cascade physical-chemical model of laser-induced transformation [22-28] is carried out. A 

significant difference in obtaining the laser-induced Thomson-Benard phenomenon and 

physicochemical phase transformations is shown. 

2. EXPERIMENTAL DATA 

The earlier experiments to demonstrate in a definitive manner the onset of thermal instability in fluids 

are those of Benard in 1900, though the phenomenon of thermal convection itself had been recognized 

earlier by count Rumford (1797) and James Thomson [4] (Fig. 1).  

 

 

Fig1. Thomson cells [4]. 

Fig 1a represents the general appearance that the surfacer of the soapy water in the pan would usally 

exhibit when left standing in the manner described. By continuous watching, it may be noticed that 

the smaller enclosed patches are general diminishing in size, being encroached on by the larger ones 

until the collapse and cease to exist. At the same time the lerge ones show tendencies to sever 

themselves into to or more new ones, which in thir turn either increase and split again, or diminish 

and go out of existence. To describe the numerous and varied features of transition in words would 

not be easy, but Fig. 1b, 1c and 1d show three successive conditions which have been observed as 

occurring. 

In Fig 1b the patch A has larger neighbours – B, C, D, and E – contiguous with it, and it has also two 

narrow patches – F and G – contiguous with small portion of its boundary. The patch A is 

comparatively narrow in the direction between C and E, and is rapidly encroached on by those two 

large patches C and E, and becomes narrower than before, without necessarily being shortened in 

length.. Also, during the same time, the narrow patches F and G collapse, each in nits place of 

meeting with the boundary of A; and in each case where the collapse takes place a bounding line is 

left between the two, which come together, as is shown by m n and p q in Fig. 1c, the patches F and G 
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of Fig. 1b having retired to their new positions, shown as F and G in  Fig. 1c. A little later,  and the 

patch A is observed to have disappeared entirely, by collapsing into the line s t in Fig. 1d [4]. 

Multitudinous varieties of changes, partaking more or less of the general character of those here 

described, may be noticed in various watchings of the behaviour of the soapy liquid from time to time. 

The patches, with their boundaries, when viewed with favourably applied light, show appearances as 

if each patch were formed as the top of column of slowly rising fluid, having a morther-of-pearl-like 

luster, and with a thin layer of more translucent liquid lying on the tops of these pearly patches. It 

seems to be that there is on the whole a very slow ascending motion in these columnar spaces, and 

that above, there is a thin superficial layer of cooler and seemingly more translucent liquid, receiving 

perpetually new supplies from the rising substance of those columns, and flowing outwards over each 

column top, and that the two sheets, spreading out on each of two contiguous columns, plunge 

downwards, where they meet in the mutual bounding line of the two spaces or column tops, the 

downward current seems to be more active that at the over parts of the septums. The various 

ascending flows here spoken of as columns, or columnar spaces, for want of any better nomenclature, 

may probably not exist like separate columns with septums between them of descending liquid except 

near the surface. It seems likely that the down-flowing of the so-colled septums may tend to gather 

into thicker streams descending from the corners of the surface patches where three of such spaces 

meet; but the internal motions, being concealed from view, remain as yet obscure, and in a great 

degree unknown. 

Further experiments were received by Benard and other researches. It will suffice to summarize here 

the principal facts established by them. They are: first, a certain critical adverse temperature gradient 

must be exceeded before instability can set in; and second, the motions which ensue on surpassing the 

critical temperature gradient have a stationary cellular character. What actually happens at the onset of 

instability is that the layer of fluid resolves itself into the number of cells; and if the experiment is 

performed with sufficient care, the cells become equal and they align themselves to form a regular 

hexagonal pattern. 

H. Benard used the expression tourbillons cellulaires, which are later known as Benard cells [5, 6]. He 

insisted on polygonal characteristics of this cellular, semi-regular vortex due to existence of polygons 

of four, five, six, and seven sides, but with a predominance of hexagons [6]. He pointed out the 

difficulty of producing regular hexagons on a long surface withiot many defects. These cellular 

vortices could be generated in a steady state, under a moderate heat flux. Benard also observed 

vortices in fairly valotile liquids, sush as alcohol or hydrocarbon, underlying the fact, that the 

evaporation chilled the surface, causing the vertical heat flux. [6]. In order to produce a uniforrn 

thickness and to avoid evaporation problems, he worked with higher temperatures, between 50 C  

and 100 C, using substances which melted at 50 C such as wax or spermaceti, a whale oil, which 

melts at 46 C, but has no significant valotility below 100 C. This allowed him to create liquid films 

of one millimeter thickness controlled bto with  one  micron and to obtain a spread of the thin layers , 

which remain constants for many hours [6]. 

H. Benard had possibility to measure thickness differences of 1 micrometer for liquid layers and of 1 

milimeter for spermaceti at an average temperature 100 C. 

Fig. 2 (which is a reproduction of one of Benard’s early photograths) illustrates this phenomenon. 

 
Fig2. Benard cells in spermaceti. Cells visualization by reflection and transmission: temperature 61.36 C, 

thickness – 0.64 mm  [5, 6]. 
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The typical Benard convection cells are represented in Fig. 3 [6]. 

 
 

Fig3. Convection cells [6]. 

 

The layer rapidly resolves itself into a number of cells, the motion being an ascession in the middle of 

cell and a descension at the common boundary between a cell and its neighbors. Two phases are 

distinguished, of unequal duration, the first being relatively very short.  The limit of thr first phase is 

described as the “semi-regular regime”; in this state all the cells have already acquired surfaces nearly 

identical, their forms being nearly regular convex polygons of, in general, 4 to 7 sides. The boundaries 

are vertical, and the circulation in each cell approximate to that already indicated. This phase is brief 

(1 or 2 seconds) for the less viscous liquids (alcohol;, benzene, etc.) at ordinary temperatures. Even 

for paraffin and spermaceti, melted at 100C, 10 seconds suffice; but in the case of very viscous 

liquids (oils, etc.), if the flux oh heat is small, the deformations are extremely slow and the firs phase 

may last several minutes or more. 

The second phase has for its limit a permanent regime of regular hexagons. During this period the 

cells become equal and regular and align themselves. It is extremely protracted, if the limit is regarded 

as the complete attainment of regular hexagons. And, indeed, such perfection is barely attainable even 

with the most careful arrangements. The tendency, however, seems sufficiently established. 

According by H. Haken [12] Thomson-Bernar phenomena are one with set processes of 

hydrodynamic instability. So, results of Fig. 2 are corresponded to small Ruyleygh numbers. The 

picture of hydrodynamic instability for great Rayleygh numbers is represented in Fig. 4. 

 

Fig4. Structures for great Rayleyghs numbers [12] 

3. MODELING AND DISCUSSIONS 

The theoretical foundations for a correct interpretation of the foregoing facts were laid by Lord 

Rayleygh in a fundamental paper [7]. Rayleygh showed that what decides the stability, or otherwise, 

of a layer fluid heated from below is the numerical value of the non-dimensional parameter (1), 

Rayleygh number Ra. 



Thomson-Benard phenomena and Relaxed Optics   

 

International Journal oaf Advanced Research in Physical Science (IJARPS)                                    Page | 6 

Rayleygh further showed that instability must set in when Ra exceeds a certain critical value Rac; and 

that when Ra just exceeds Rac, a stationary pattern of motions must come to prevail. The principal 

theoretical question is therefore: how is one to determine Rac? 

For resolution of this problem system of equations of hydrodynamics and thermo conductivity with 

corresponding boundary conditions were used. 

We explain basic peculiarities of Thomson-Benard phenomena with using Bussinesq approximation 

[1-3]. 

According [1-3] basic system of equations in this approximation may be represented in next form: 

,
j

j

j j

u
u

t x x

 

 

  
  

                                                                                                                             (2) 

1
,

j

j

j V j V

uT T p
u T

t x c x c


 

 
     

  
                                                                                                    (3) 

2
.

3

j ji i i

j i

j i j j i j

u uu u up
u g

t x x x x x x
    

        
                  

                                                                (4) 

Where p – pressure, T – temperature, u – velocity of fluid in prturbated state, 
Vc  – specific heat 

capacity for stable volume,   – dynamical viscosity,   – viscous dissipation, 
i  – the unit vector of 

proper direction. 

Let the altered temperature distribution be 

0' .j jT T x                                                                                                                                     (5) 

In the unperturbated state 

0 ;j

jx


  





                                                                                                                                        (6) 

and the change in the density  δp caused by the perturbation Θ in the temperature is given by 

 0 1 .j jp x                                                                                                                     (7) 

The analysis of these system equations in approximation of normal modes gives next equations [2, 3]: 

  2 2 2 2 2 2g
D a D a W d a






 
     

 
,                                                                                               (8) 

 2 2 2Pr ,D a W d W
k




 
    

 
                                                                                                            (9) 

where 
d

D
dz

  and Pr
k


  is the Prandtl number. 

The associated boundary conditions are  

0, 0W    for 0z   and 1,                                                                                                               (10) 

and 

DW = 0 for z = 0 and 1                                                                                                                        (11) 

if both bounding surfaces are rigid or    

DW = 0 for z = 0 and D2W = 0 for z = 1                                                                                              (12) 

if the bottom surface is rigid and the top surface is free. 

By eliminating   between the equations (8) and (9), we obtain 

   2 2 2 2 2 2 2Pr ,D a D a D a W Raa W                                                                                     (13) 
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where Ra is Rayleigh number (1). 

An identical equation governs  . 

The instability of Rayleygh numbers for first even and first odd modes is represented in Fig. 4. 

 

Fig4. The Rayleygh number at which instablility sets in for disturbances of different wave numbers a for the first 

even (curve labeled 1) and the first odd (curve labeled 2) mode [2, 3]. 

The proper solutions for W (curve 1) and (a2Ra)-2/3F (curve 2) for the state of marginal stability for the 

case when both bounding surfaces are rigid [2, 3] are represented in Fig. 5. Where F is  F  [2]. 

 

 

Fig5. The proper solutions for W (curve 1) and (a2Ra)-2/3F (curve 2) for the state of marginal [2]. 

The described phenomenon  was  investigated  by Bénard '' as long ago as the beginning of the  

present century. In recent times It has attracted attention for a number of reasons—among them 

the extremely fundamental characteristic: this  is  an example  of  the  formation  of an ordered 

structure as the result of  an  external  influence, essentially deriving the system from a state of 

thermodynamic equilibrium." 

It is interesting to investigate whether it is possible to realize a somewhat similar  situation  

in  regard  to the gas of charge carriers in a semiconductor [18-21]. Of course, here an 

electric field might play the role of the gravitational field. The reasons  for  posing  this  

problem are clear: a periodic distribution of the electron temperature and (or) of the 

concentration of charge carriers (with a period exceeding the mean free path  with  respect to 

momentum) would imply that various macroscopic characteristics of the system are also 

periodically dis- tributed,  among  them  the  electrical  conductivity,   the light absorption 

coefficient, etc. with obvious consequences [18]. 
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Heating of an electron gas can be achieved even with- out the participation of a static field-with 

the aid of light (this possibility has been investigated in a different context by a number of author 

[21]). 

Thus, we arrive at the scheme represented in the Fig 6 [18]. There the force acting from the 

side of the externally applied electric field 1s denoted by F. It is necessary, however, to keep 

in mind that the carriers redistribution due to compression of the electron gae may lead to the 

appearance of an additional field in the sample. The latter, of course, impedes the effect of 

interest to us, 

 

Fig6. The sample is bounded by the planes z = 0 and z = l and is infinite in the x and y directions. The half -spaces z <0 

and z > l are occupied by dielectric media [18].  

In the present article we shall consider a monopolar semiconductor under conditions in which the 

characteristic times of interelectron collisions (
ee )› mmmentum relaxation (

p )t and energy 

relaxation ( ) satisfy the inequalities 

.p ee                                                                                                                                    (14) 

In this connection the concept  of  an electron temperature  T has a unique meaning, and all 

kinetic coefficients  depend on T. The latter fact allows us to avoid the complications indicated 

above, which are related to the compression of a gas of charged particles. In fact, a new mechanis 

for variation of the pressure appears in the conditions under consideration, resulting from the 

temperature dependence of the  energy  relaxation  time  and the temperature dependence of the 

thermal conductivity  of the electron gas:  it  is  obvious  that  the  pressure  of the electron gas 

is very Strongly increased in  the  lower part  of  the  sample''  (see  the  figure) for  0d
dT

   and 

0d
dT

  . In this connection the  compressibllity  of  the gas can generally be neglected, whlch 

we therefore do. Consequently the presence of an external field is  no longer compulsory 

(although it may turn out to be of some use); here we assume F = 0. 

The absorption of warming light in the conditions under consideration must be caused by 

intraband transitions. In this connection energy is put into  the  electron gas, but new charge 

carriers do not appear, and the redistribution of the electrons  in  space  aleo  does  not play an 

important role. 

Under conditions (14) the fundamental equations  of the problem are the equation of continuity, 

the expression for the current density j, the energy transport equation, and equation Poisson's 

equation. Let us introduce the following notation: n denotes the carrier  concentration; n  denotes its 

small fluctuation; j
u

en
  is the drift velocity; T0 is the lattice  temperature  (expressed  in energy 

units, just like T);   is the  differential  thermo e.m,f.;   is the mobility (
rT~ , where r is a  

known number); m is the effective mass;   is the  dielectric constant of the sample;   is the 

coefficient for the absorption of the "warming" light; J(z) denotes the flux of  light energy  into the 

sample, and Jm  1s Its  value at   z = +0. 

It is clear that three characteristic  lengths  exist  in the problem: l, 1  , and 

1
2

1 0 0
0

2
3

 
    

 
 (the 

subscript  0 denotes the corresponding quantity in the absence of heating (for T = T0)). Depending on 

the relationships between them, the following cases are dtstinguiahed: 
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a) surface absorption, a ''thin’' sample: 1 1

0 ;l    b) surface  absorption,   a   "thick" sample:  
1 1

0 ;l     c) bulk absorption: 1 1

0 .     

In cases a) and b) the absorption of light energy  can be taken into consideration with the aid of the 

boundary condition ‹xi the equation of energy transport; in case c) the absorption must be taken  into  

consideration  in this equation itself. The latter sltuation is evldently encountered most frequently, and 

it is the only case which wiH be explicitly treated in [18]. One can show, however, that results 

analogous to those  indicated  below are obtained for surface absorption. We shall also assume that 
1.l    In this  connection  the  sample  can be regarded as "infinitely thick." 

Thus, in the case of a nondegenerate gas the equations for the problem have the form 

0,divu                                                                                                                                                 (15) 

 ,u E T                                                                                                                                              (16) 

         101 2 2 25 2 ,
3 3 3 3

T TT r div uT euE div T n J z
t

 


       


                                       (17) 

4 .e ndivE  


                                                                                                                                                             (18) 

Formula (16) is obtained  from  the  well  known  expression for the current density [18, 21]: 

    .
T

j en T E n T T
en

 
 

     
 

                                                                                                      (19) 

Here the gradient In is taken at constant temperature. The approximation of incompressibllity 

assumed by us consiate, as uaual, of neglecting the second term inside the curly brackets (retaining  

the  possibility  of  changes in n due to a variation of the temperature T). Poisson’s equauon (18) is the 

only equation  where  it is  necessary to take the small change of the electron  concentration into 

consideration. As is customary in such a formulation of the problem, in what follows it  will  be  

utilized in order to estimate 6n and to establish  the  eondltiona for applicability of the quaaineutrality 

approximation, 

The boundary conditions on Eqs. (15) − (18) are the usual eontinulty condidons for E  (they  

determine  the field outside the sample), the conditions of boundedness of all quantities upon 

unlimited (in absolute value) growth  of the coordinates x, y, and z, and the equations 

0, 0,zu z                                                                                                                            (20) 

 0 , 0.Tn n T T z
z

    


                                                                                                       (21) 

Here   ia a phenomenologically introduced positive coefficient (having the dimensions of a velocity), 

which characterizes the heat exchange between the electron gas in semiconductor and in the 

dielectyric medium adjacent to it. For too not large difference between T and T0, in order of 

magnitude one has 

1
2

,
T

P
m


 

  
 

                                                                                                                                        (22) 

Where P is the probability for the passage of an electron through of contact. 

According to [18] critical value of the energy flux, the value at which the considered change in the 

state of electron gas takes place 

 
03

.
2 2c

o

nT
J

  



                                                                                                                         (23) 

We note, that ,
n

   where   is the cross section for photon absorption. 

For n- InSb [18] this formula give value for 3T K   

2

2

2,5
10 .

2
c

W
J

cm 

  
     

                                                                                                                        (24) 
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In this material  
2

172.3 10
2




   for a wave length 9 .   For  300   this gives 

14 22.5 10 .cm     

The hexagonal forms of Thomson-Benard cells are characterized only thin layers. This question was 

resolved by Rayleygh [7] and H. Haken [12]. Haken investigated the problem of stability of different 

modes. According to [12] one-mode confiquration have maximal stability. Haken received that of 

stable configuration have cylindrical and hexagonal forms. Rayleygh accented attention on hexagonal 

forms as maximal stable phases too [7]. From microscopic point of view this hexagonality is display 

of the molecular structure of a substance [3, 26]. Triangle water molecules are created the hexagonal 

monolayers; organic media included hexagonal elements of its structure. Threfore for heatind thin 

layers with few monolayers begin oscillate and on the begin stage of generation the vortexes its 

borders have hexagonal forms (symmetry of molecules influence on the symmetry of cells) [3, 26]. 

These thin layers have some analogy with graphen and silicen [29]   

4. POSSIBLE OBSERVATIONS AND APPLICATIONS THOMSON-BENARD PHENOMENA IN RELAXED 

OPTICS 

Now we will discuss the problem of possible receiving and observation of Thomson-Benard 

phenomena in Relaxed Optics. First attempt of using the theory of Thomson-Benard phenomena for 

explanation the results of the generation the laser-induced hexagonal nanohills on diamond substrate 

of germanium was made my A. Medvid [30]. But receiving structures had volume nature in contrast 

to surface nature for the case classical Thomson-Benard phenomena [30]. We show that these 

experimental data may be explaining with help cascade model of excitation the proper chemical bonds 

in the regime of saturation the excitation [28]. 

We must see on the Thomson-Benard phenomena with physical-chemical point of view. In the case of 

liquid and electronic gas these phenomena has nonequilibrium nature in Relaxed Optics – irreversible 

nature. Therefore, we must represent the possible realization of these processes with help first kinetic 

concept of Relaxed Optics. 

Firstly, we must estimate temporal and energetic characteristics of regimes the laser irradiation, which 

can be search of these processes according to first (kinetic) concept of Relaxed Optics [22]. 

The chain of hierarchy of corresponding times may be represented in next form. Let 
i  is the time of 

laser irradiation of matter; 
h  is the time of heat the irradiated matter to point of its melting; 

m  is the 

time of existing the melting phase, including heatind in liquid phase; 
TB  is the time of generation 

Thomson-Benard structures and its life, 
c  is cooling time of irradiated. 

The time hierarchy for laser-induced Thomson-Benard phenomena is next 

τi << τh < τm << τTB ~ τc.                                                                                                                       (25) 

Energy characteristic of irradiation is next: laser radiation must have self-absorption nature with 

absorption index ~ 10010  cm-1 melting layer must be having sufficiently large value. This condition 

is necessary for the homogeneous power transmission of laser radiation to irradiated matter. So, 

irradiation of indium antimonide and indium arsenide by millisecond pulses of Ruby and Nedimium 

lasers (index absorption ~ 105 cm-1) is connected with heterogeneous processes of phase 

transformations in irradiated matter, which is caused by the processes of second-order reradiation of 

first-order absorpting radiation [23]. For the observation of pure laser-induced Thomson-Benard 

phenomena, we must create the conditions of homogeneous absorption of light in subsurface region of 

irradiated matter. For the regimes of absorption the laser irradiation with absorption indexes 

~ 110 100 ,cm  processes of second-order reirradiation have analogous absorption indexes. It is 

allow receiving homogeneous conditions of radiation in corresponding subsurface layer of irradiated 

matter. This regime of irradiation allows increasing the value of homogeneous depth (distribution) of 

irradiated matter. 

Basic energies, which are characterized the laser-induced Thomson-Benard phenomena are next: hsE  

– energy of heating the irradiated matter is solid phase to melting point; hmhE  – hidden melting heat; 

TBE  – energy of heating the laser-irradiated matter to point of generation the Thomson-Benard 

phenomena. 
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Thus, formula for full effective energy, which is necessary for the generation Thomson-Benard 

phenomena, may be represented as 

.hs hmh TBE E E E                                                                                                                                 (26) 

This energy condition is very rough and has more “thermodynamic” as “laser” nature. But this 

estimation allows determining regimes of laser irradiation of corresponding matter, which are 

necessary for expected experimental data. In this case, we assumed that the laser-induced and 

thermodynamic processes of melting and the behavior of the molten material occur in the same way. 

This allows the use of thermodynamic methods to assess the energy exposure regimes. Naturally, in 

this approximation, the effective "thermodynamic" absorbed energy is proportional to the laser 

irradiation energy and can reach 40-50 percent of the incident radiation. 

Roughly speaking conditions (25) and (26) allow receiving the “thermodynamic” nature of necessary 

regimes of laser irradiation. 

The conditions of creation laser-induced frozen picture of Thomson-Benard phenomena are connected 

with next temporal correlation: lifetime of cells must more as time of cooling down of irradated 

matter.  

In really, we can use specific heat of melting Qshm and specific heat of vaporization Qshv.. If we know 

the volume of melting material, then we can estimate the effective absorbing energy. For the 

observation the Thomson-Benard phenomena we can determine the rough threshold of its processes as 

QTB ~0,5Qshm. Esxperimental values of corresponding regimes the irradiation may be receive after 

multiplication the corresponding heat on the volume of melting material Vm ant its densities. 

Corrresponding energiers we mark as Eshm and ETB. We choose the size of the irradiated area as 

follows: diameter – 2 cm, and depth – 0,1 cm, volume – 0,314 cm3. 

Roughly speaking bond between corresponding specific heat and energy may be represented nwith 

help nexy formula 

)27(,i

mol

i

mol

i Q
V

V
Q

m

m
E    

where m, mmol, V, Vmol are mass and volume of transformed matter and one one mol, respectively. 

The basic estimations these values of specific heats and corresponding enrergies for silicon, 

germanium, and titanium are represented in Table 1. 

Table1. Energies characteristics of laser-irradiated silicon, germanium, and titanium, which are necessary for 

its melting generation laser-induced Thomson-Benard phenomena and vaporization.  

 Qshm, kJ/mol Qshv, kJ/mol 
QTB, 

Vmol, 

cm3/mol 
Eshm, kJ ETB, k J Ev, kJ 

Silicon 50.6 383 192 12.1 1.312 4.982 9.964 

Germanium 36.8 328 164 13.6 0.851 3.786 7.571 

Titanium 18.8 422.6 211.3 10.6 0.557 6.259 12.518 

The corresponding densities of enrgies, which are necessary for the breaking of proper numbers of 

coordination numbers (chemical bonds) in the regime of saturation thr excitatiion for silicon and 

germanium are represented in Table 2. 

Table2. Volume density of energy Ivi (103 J/cm3), which is necessary for the breakage of proper number of 

chemical bonds in the regime of saturation of excitation in Si and Ge [3, 22, 28].  

 Iv1 Iv2 Iv4 Iv5 

Si 12,8 – 14,4 25,6 – 28,8 51,2 – 57,6 63 – 72 

Ge 6,3 – 8,4 12,6 – 16,8 25,2 – 33,6 31,5 – 42 

If we multiplicate the data of Table 2 on volume 0.314 cm3 than receive next results (Table 3). 

Table3. Energies Ei (kJ), which are necessary for the breakage of proper coordination numbers (chemical 

bonds) in the regime of saturation of excitation in Si and Ge for volume 0,314 cm3 .  

 E1 E2 E4 E5 

Si 4.019 – 4.525 8.038 – 9.050 16.076 – 18.100 20.095 – 27.150 

Ge 1.978 – 2.637 3.955– 5.274 7.910 – 10.548 9.888 – 13.529 
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Experimental data by A. Medvid, which he wanted to explain as Benard phenomenon, are represented 

in Fig. 7 [30]. Samples of Ge {111} and Ge {001} i-type single crystals are used in experiment. 

Nd:YAG laser (wavelength 1,064 μm, duration of pulse 15 ns, pulse rate 12,5 Hz,  power P=1 MW) 

was used for the irradiation. But the pictures of Fig. 2 and Fig. 7 are various. Therefore we must be 

search another ways of explanation the data of Fig. 7.  

 
Fig7. Three-dimensional AFM image of nanostructures after Nd:YAG laser irradiation with density of power 28 

MW/cm2 on Ge surface [30] 

Comparative analysis results of Table 1 and Table 3 show, that maximal values of energies, which are 

necessary for corresponding physical chemical transformations in laser-irradiated silicon and 

germanium, have similar values. Therefore, we must mark basic peculiarities of irradiation conditions 

for the receiving physical-chemical tranasformation irradiated matter to phase with more low crystal 

symmetry. Two multipulsr regimes of laser irradiation are effective: first nanosecond with absorption  

index 165 1010~  cm  Fig. 8a [31, 32]; and picosecond and femtosecond with absorption index 
143 1010~  cm  (Fig. 8b) [33]. Roughly speaking, we must have only results for column E2 of Table 3. 

But this results give integral value of energy, which is necessary for the breaking the two coordination 

numbers for the transition from diamond lattice to hexagonal. We must choose the experimental 

conditions so that the heating of the irradiated material must be insignificant. The first initial pulse 

must generate the emergence of a new phase, subsequent pulses lead to the growth of this phase, as 

well as the appearance of new phases on its surface (the hedgehog similar surface structures) [3, 28, 

31-33]. New phases grow perpendicular to the surface of the previous phases. The surface has an 

irregular shape. Next conclusion was made: thermal processes in this case make an insignificant 

contribution to the final formation of structures. Really regimes of irradiation are ~ E2 [3, 28, 31-33]. 

For more intensive regimes of irradiation E4 and E5 we can receive ablation or sublimation of 

irradiated materials [3, 28, 31-33]. Only multipulse regimes of irradiation allow receiving the cascade 

oh laser-induced physical-chemical phase transformations. These regimes must be without heating 

and melting or sublimation. It must they should be much faster than heating processes and even more 

melting of the irradiated material.  

 

Fig8. a) − Walled Si structures produced by 2040 laser pulses (Ed =1.5 J/cm2, pulse duration 25 ns, vawelength 

248 nm) in 1 atm of SF6  [31, 32]; b) - Surface silicon nanocolumns of little scale, which have orthogonal 

orientation to a crests of nanorelief of large scale [33]  
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For the Thomson-Benard phenomena we have another scenario. Main part of laser absorpted energy 

must be transformed in heating. Elements of crystalline or quasi-crystalline structures are presented in 

molten silicon and germanium [34].  Classical Thomson-Benard phenomena have more large scale as 

results of Fig. 8. Effects of Fig. 8 are undesirable for getting Thomson-Benard phenomena. We must 

receive conditions analogous to melting of spermaceti [5, 6] or paraftine [7]. After melting, the 

Thomson-Bénard structures are "frozen" with relatively rapid cooling. 

Thus, the processes of creation laser-induced Thomson-Benard phenomena for multipulse regimes of 

irradiation are unlikely.  

One of basic conditions of creation Thomson-Benard phenomena are homogeneous irradiation of 

fairly large areas of material. Depths more as one micron were investigated by Benard and his 

followers. Depths less as one micron were not investigated. Laser-induced generation of Thomson-

Benard phenomena allow to determine spatial and temporal limits of these processes. Spatial limits 

must be determined by depth of melting layers; temporal – by irradiation time and time of generation 

the second-order processes. 

Next direction of search Thomson-Benard phenomena is connected with including electromagnetic 

and shock processes in the formation of pre-vortexes and vortexes states. The influence of light 

polarization on laser-induced space distribution (interference pattern) is modeled with help V. Makin 

model of surface polariton-plasmons [35]. This model allows determining the period of interference 

pattern, but cannot explain its stratification. This question was resolved with help cascade model of 

excitation the proper chemical bonds (or centers of light scattering) in the regime of saturation the 

excitation [3, 22-28]. 

We can search other ways of realization the generation pre-vortexes structures with electromagnetic 

nature. First are hydromagnetic structures [1]. This method was used for the modeling of Sun spots 

and Sun activity [1]. Second is connected with concept of optical solitons [36]. But in Relaxed Optics 

we must connect these phenomena with phase transformations in laser-irradiated matter.  

The Thomson-Benard phenomena with change gravitation interaction on electromagnetic with point 

of Thomson-Benard phenomena were stadied by V. Bonch-Bruevich and A. Temchin [18-20]. The 

formal analogy between nonlinear optical phenomena and second-order nonequilibrium phase 

transitions was noted by H. Haken [3, 12]. Therefore roughly speaking we can transit from 

nonequlibrium to irreversible processes and after this will be have processes of Relaxed Optics [3, 22-

28]. 

As result we must search more complex universal methods for the more full and adequate 

representation and explanation of possible laser-induced pre-vortexes, including Thomson-Benard, 

processes and phenomena. 

5.  CONCLUSIONS 

1. The short historical analysis of Thomson-Benard phenomena is represented.  

2. Short review of main experimental data is made.  

3. The role of gravitation field and thermal convection processes on the formation two dimensional 

polygonal pictures is investigated.  

4. Rayleigh theory of these phenomena and its developments are analyzed.  

5. The problem of Benard phenomena for hot electron gas in semiconductors are represented and 

observed.  

6. Role of electromagnetic and thermal processes in the Relaxed Optical processes are estimated. 

7. Conditions for the generation of Thomson-Benard processes in phenomena in the laser-irradiated 

matter are formulated.  

8. Thus, we show, that laser-induced Thomson-Benard processes are dynamic process of Relaxed 

Optics. 

9. Discussions of possible experiments are made.   
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10. Comparative analysis of conditions the irradiation for laser-induced physical-chemical processes 

and Thomson-Benard phenomena is represented.        
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