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1. INTRODUCTION 

Since Carbon nanotubes (CNTS) was found in 1991, it is always the hot spot of the research [1]. 

CNTS has many excellent mechanics, electricity and chemical performance with high strength and 

toughness [2-3]. As CNTS have high length-diameter ratio, it can be used as an ideal composites of 

strengthening phase [4]. In order to excavate the huge potential application of CNTS, the mechanical 

properties of it have been studied extensively [5-6]. 

At present, many achievements have been got on CNTS both on experimental and theoretical aspect. 

For experimental study, Treacy et al. [7] measured the amplitude of thermally induced vibration of the 

free end of CNTS through TEM in 1996. Wong et al. [8] applied an AFM probe to press CNTS, and 

then measured the force and deflection values during the deformation of CNTS. However, it is 

extremely difficult to obtain the mechanical properties of CNTS experimentally at the nanoscale. 

Therefore, the method of studying CNTS is mainly in theoretical analysis. The main theoretical 

analysis methods are molecular dynamics, continuum mechanics and so on. Among these methods, 

molecular dynamics simulation is a reliable and highly recognized method. Yakobson et al. [9] used 

molecular dynamics to study the buckling position and energy curves of CNTS in axial compression 

bending. Kowaki et al. [10] studied the relationship between the melting point and the geometry size 

of SWCNTS. But, in the molecular dynamics method, this process requires high ability of computer 

operation, which is quite time comsuming[11-12].therefore, in order to overcome the deficiency of 

molecular dynamics simulation, the classical continuum model has been widely applied. YAN et al. 

[13-14] studied the stability and dynamics of CNTS based on the classical continuum model. 
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However, it should be pointed out that the classical continuum model can't simulate CNTS under the 

environment of micro nano small scale effect. As the scale effect of material mechanical properties is 

very remarkable, it restricts the application of continuous medium model [15]. In order to solve this 

problem, reserachers introduced the theory of nonlocal elasticity and combined this theory with the 

continuum mechanics model, which can not only simulate the influence of microscopic scale effect on 

nanostructures, but also have the characteristic of simple calculation. Huang Kun et al. [16] combined 

the theory of nonlocal elasticity with Euler-Bernoulli beam to study the static and dynamic 

characteristics of small initial curvature CNTS. Sudak [17], based on the theory of nonlocal elasticity, 

used the beam model to study the buckling problem of CNTS under the consideration of small-scale 

effects and van der Waals forces. Although this method is widely used, it also has its shortcomings. 

For example, the accuracy and rationality of the model is not satisfactory in the study of 

high-frequency waves [18]. Moreover, since the scale effect affects the stress and strain of CNTS, the 

non-local theory is not enough to analyze the scale effect only from the perspective of stress. Aifantis 

[19-20] proposed to analyze the impact of scale effect on material strain by strain gradient elasticity 

theory. Based on strain gradient theory, Chen et al. [21] calculated the intermolecular forces which is 

identical with the mimetic results of molecular dynamics. Challamel [22] used the strain gradient 

elastic model and Eringen's non-local elastic model to discuss the main properties of small-scale 

effects in vibration analysis. Combined the high-order non-local elasticity theory with the strain 

gradient theory, Lim et al. [23] given the beam model governing equation and boundary conditions of 

analyzing the wave characteristics of CNTS, and then discussed the law of the influence of scale 

effect on the wave parameters of the beam model.  

In this paper, to investigate the effects of different scale effects and initial curvature of materials on 

the dynamic characteristics of single-walled carbon nanotubes (SWCNTS), a Bernoulli–Euler beam 

model with non-local stress and strain gradient coupling constitutive relation is proposed. Based on 

the model, the mechanical response of SWCNTS is analyzed. 

2. NON-LOCAL STRAIN GRADIENT BERNOULLI-EULER BEAM MODEL WITH SMALL INITIAL 

CURVATURE 

As shown in Fig.1, the single-walled carbon nanotubes (SWCNTS) were expressed in a 

three-dimensional Cartesian coordinate system, where L  is the pipe length and 0w is the initial 

deformation, x and y are axial and Horizontal coordinates, respectively.  
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Fig1. Schematic configuration of a nanobeam 

According to Lim's research [23], the non-local elastic stress constitutive and strain gradient 

constitutive are coupled, and the new carbon nanotubes stress-strain constitutive equation can be 

obtained as follows: 
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          (1) 

Where 0e a  and 1e a  is the non-local scale effect parameter, l is the strain gradient effect parameter, 

which represent the size of the influence range of the small-scale effect and the strength of the scale 

effect. xx  is the stress tensor, xx  is the strain tensor, 2  is Laplace operator. E is the modulus of 

elasticity. For the Euler-Bernoulli beam model with initial curvature shown in Fig.1, it can be assumed 

that 0 1e e e  , then the Eq. (1) can be simplified as: 

   
2 2 2 21 1xx xxea E l      

                                                      (2) 

For the one-dimensional Euler-Bernoulli beam model, if only the normal stress and normal strain in the 

axial direction are considered, Eq. (2) can be further simplified as: 

   
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x x
  

    
    

    

                                                (3) 

where    ,x x  are stress and strain functions, and ea  . 

we obtain bending moment and axial force as following 

 M y x dA                                                                     (4) 

 N x dA                                                                      (5) 

Where A  is the cross-sectional area of a SWCNTS beam. 

the displacement strain equation of Von Karman is used to represent the X-axis strain tensor [24]: 

22
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     

                                                            (6) 

From Eq. (3), (4), (5) and (6), the relationship between bending moment, axial force and displacement is 

obtained as follows 
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2 2

2 2 2
1

M w
M EI l
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                                                  (7) 
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                                 (8) 

Where 
2I y dA  is the moment of inertia of the cross section. 

For the classical long beam (Bernoulli-Euler beam), compared to the axial stress, the influence of shear 

stress is small. Therefore, the axial stress and strain can be deduced without considering the influence of 

shear force. The control equation of Euler-Bernoulli beam theory with Newton's second law is as follows 

[25-26]: 

2 2
0

2 2y

wM w w
N p m

x x xx t

     
     
     

                                             (9) 
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where xp and yp are the components of the external load in the x and y directions, respectively. 

By substituting Eq. (9) and (10) into Eq. (7) and (8), we can get: 
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                      (12) 

Integrating Eq. (11) twice with respect to x, we have: 
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          (13) 

Substitute Eq. (13) into Eq. (9), we get: 
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                 (14) 

Substituting Eq. (12) into Eq. (14) and neglecting the terms of
4 , the transverse motion equation can be 

obtained: 
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    （15） 

Similarly, the first partial derivative of Eq. (12) with respect to x is obtained as follows: 
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Substituting Eq. (16) into Eq. (10), and leting 0xp  , we get: 
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                （17） 

For slender beams, longitudinal inertia terms can be ignored. Therefore, longitudinal displacement u is 
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mainly caused by transverse deformation. Then, it can be got from Eq. (17): 

22
2 0

2

1
1 0

2

wu w w
EA l

x x x x x x

         
                   

                                    (18) 

From Eq. (18), it can be obtained: 
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The equation (18) is integrated twice with respect to x: 
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Where    1 2,c t c t are functions of time, which are determined by the boundary conditions of u . 

For a beam with immovable ends (hinged or clamped end), imposing the boundary 

conditions    0 0u u L  , yields: 
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Substitute Eq. (22) into Eq. (20) and we get: 
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Substitute Eq. (23) into Eq. (15) and we get:  
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Eq. (24) omits the nonlinear inertia term, and can be simplified as: 
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                     (25) 
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Here we have introduced dimensionless variables
0 0 0/ , / , , /x x L w w L t t w w L    , and drop 

the caps of
0, , ,x w t w in Eq.(25) for the simplifications, 4 4

0 /EI L m  is the nature frequency 

for a hinged–hinged beam without the nonlocal effect and the initial curvature. 

2 22 42 2 4
0 0 0 0

0 02 2 2 2 2 4 4 4
0 0

2 2 4 4 2 6 2

2 2 2 2 4 4 2 4 6

1 1

2 2

1

L Lw w w wEA w w w EA w w w
dx dx

x x x x x xm L x x m L x x

w w w l w

t L x t x L x m



 

 

  

                       
                 

                          

   
    
    

2

2 3 2 2
0 0

y yp p

L x m L





   (26) 

If the beam-ends are not subjected to external moments, for example a hinged–hinged beam, the associated 

boundary conditions are
   

   2 2

2 2

0, 1,
0, 1, 0

w t w t
w t w t

x x

 
   

  . 

As Eq. (26) is a nonlinear partial differential equation with integral term, it is difficult to get an analytic 

solution. The Galerkin method is one of the most widely used approximate methods, and it is employed to 

solve the partial differential equations. Under the normalized boundary conditions, the approximate 

solution of differential Eq. (26) can be set as: 

1

sinn

n

w n x 




                                                                    (27) 

Here only the first term is used. For the sake of simplification, we assume 0 sinw d x . Substituting the 

solution into Eq. (26), and multiplying it by sin x and integrating over the interval [0,1] leads to: 

2
2 2 3

1 2 32

1
1

2
p

L


      

 
     

 
                                               (28) 

where:

1 2 2 2 2 2 4 2
2

12 2 2 2 2 4 2

0 00

4 2 4 2 4
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0 0

1 1
1 sin , 1 1

2 2
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         

    

   
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   


 

The transfer term of Eq. (28) is simplified 

2 2 3
1 2 3 0k k k p      

                                                          (29) 

where： 

 

2 2 2 2 4 4 4
2
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 
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3. FIRST-ORDER FORCED VIBRATION EQUATION 

By adding damping term in Eq. (29), the damped forced vibration equation of CNTS in first-order mode 

can be obtained 

2 2 3
1 2 3 0C k k k p        

                                                      (30) 
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In order to make the quadratic and cubic strongly nonlinear terms playing a role in the process of the same 

order perturbation, the above equation can be written as: 

2
2 2 2 2 3 2

1 2 32
2 cosc k k k f t

tt

 
       
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    
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                                       (31) 

where 
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  

 
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

 

We seek an approximate solution to this equation by letting: 

     2

0 0 1 2 1 0 1 2 2 0 1 2, , , , , ,T T T T T T T T T                                                 (32) 

Since the excitation is  2O  , 1k   is assumed to be  2O  for consistency. Hence we put: 

2

1k                                                                            (33) 

Substituting Eq. (32) and Eq. (33) into Eq. (31) and equating the coefficients of 0 ， and 2 on both sides, 

we obtain 

2 2
0 0 1 0 0D k                                                                       (34) 

2 2 2
0 1 1 1 0 1 0 2 02D k D D k                                                               (35) 

 

2 2 2
0 2 1 2 0 1 1 0 2 0 1 0 0 0

3
2 0 1 3 0 1 0 2

2 2 2
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D k D D D D D cD

k k f k T T

     

   

      

  

                                  (36) 

The general solution of Eq. (34) can be written in the following form: 

       0 1 2 1 0 1 2 1 0, exp , expA T T ik T A T T ik T                                           (37) 

Substituting 0 into Eq. (35) yields 

   2 2 2
0 1 1 1 1 1 1 0 2 1 02 exp exp 2D k ik D A ik T k A ik T AA cc        

                            (38) 

Eliminating the terms in Eq.(38) that produce secular terms in 1  yields 0 0D A   or  2A A T .Hence the 

solution of Eq.(38) becomes: 

   2 22
1 1 0 1 02

1

1 1
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3 3

k
AA A ik T A ik T

k


 
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 
                                   (39) 

Substituting 0  and 1 into Eq. (36) gives  
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Where the prime denotes the derivatives with respect to 2T and NST stands for terms proportional 

to  1 0exp 3ik T . Secular terms will be eliminated from 2 if: 

   
2

22
1 3 22

1

10 1
2 3 exp 0

23

k
ik A cA k A A f i T

k


 
      

 

                                    (41) 

Letting  
1

exp
2

A i   in (41) and separating real and imaginary parts, we have  

2

1

sin
2

f
D c

k
                                                                    (42) 
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33 1 2

2 3
11

9 10
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224
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D
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
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Where 

2T                                                                             (44) 

Eliminating  from (43) and (44) yields: 
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33 1 2

2 3
11

9 10
cos

224

k k k f
D

kk
    


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Therefore to the second approximation: 
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1 1
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                                (46) 

Where  and  are defined by (42) and (45) 

Letting Eq. (42) and (45) into 2 2 0D D   ,and the steady-state solution can be deduced: 
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f
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9 10
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The sum of the square of the above two equations is: 
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where 0  , Eq. (49) can be rewritten as: 
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                                                  (50) 

4. RESULTS AND DISCUSSION 

In the present study, a (15,15) SWCNTs is used as an example. The diameter is R =2.034 nm, the 

thickness of the tube wall is h =0.0066nm. The other physical and geometrical parameters are: 
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15 2 24 2 4
00.8nm, 4.866 10 kg / m, nm218 , 0.422nm  5.848 10 5.5, ,L m I A E TPa       

   

Using these data to Eq. (50), a graph of the amplitude and frequency difference in the forced vibration 

can be obtained (in Figs.2,3 and 4). 

 

Fig2. Influence of non-local scale effect on dynamic characteristic curve (Strain gradient parameters and initial 

deformation amplitude are 5, 0.3l d  ) 

It can be seen from Fig.2 that no matter what the value   is taken, the amplitude changes in the same 

trend, that is, the amplitude of   increases with the increase of frequency difference  . However, when 

the frequency difference   reaches a certain critical value, the amplitude drops sharply, and the 

magnitude of this critical amplitude varies with the difference of  . When the strain gradient effect is 

present, the vibration effect of CNTS is enhanced with the increase of non-local scale parameter  , 

therefore the non-local stress effect softens the stiffness of CNTS. 

 

Fig3. Influence of strain gradient effect on dynamic characteristic curve (Non-local stress parameters and 

initial deformation amplitude are 1.5, 0.3d   ) 

As shown in Fig.3, with the increase of strain gradient parameters, the amplitude of carbon nanotubes 

becomes smaller at the frequency difference of the same value, which plays a strong damping role and 

obviously strengthens the stiffness of carbon nanotubes. 

 
Fig4. Influence of initial curvature on dynamic characteristic curve (Nonlocal stress parameters and strain 

gradient parameters are
1.5, 5l    
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As can be seen from Fig. 4, when the frequency difference decreases slowly, the stiffness of CNTS 

changes from hardening to softening and then to hardening with the increase of d. Therefore, the initial 

curvature complicates the relationship between frequency difference and vibration amplitude in the forced 

vibration. 

5. CONCLUSION 

In this paper, the non-local elastic stress constitutive and strain gradient constitutive are coupled, and 

the non-local elastic theory and strain gradient theory are combined to analyze the microscopic scale 

effect, therefore the scale effect subjected to CNTS can be more accurately simulated. Based on the 

new constitutive relation, a new Bernoulli–Euler beam model with a small initial curvature is 

established and applied to the forced vibration of carbon nanotubes. The results indicate that the initial 

curvature of the nanobeam have a significant influence on the mechanics of nanobeam. First, the 

strain gradient effect strengthened the stiffness of CNTS and the non-local stress effect softened the 

stiffness of CNTS. Second, initial curvature complicates the relationship between frequency 

difference and vibration amplitude in forced vibration of CNTS. 
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