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1. INTRODUCTION 

This theory’s aim is that we discover the spherical solution of the quantum gravity.  

We can think the following formula.                          
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h  is the plank constant, c  is the light speed,G  is the gravity constant, M is the matter’s mass. 

The classical vacuum solution (Schwarzschild solution) of the general relativity is 
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2. SPHERICAL QUANTUM SOLUTION IN VACUUM STATE 

In this theory, the general relativity theory’s field equation is written completely. 
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The Ricci tensor is by 0T  in vacuum state. 
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The proper time of spherical coordinates is 
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If we use Eq(5), we obtain the Ricci-tensor equations. 
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In this time,   
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By Eq(10), 
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By Eq(6) and Eq(7), 
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Hence, we obtain this result. 
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If Eq(14) inserts Eq(8), 
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If we solve Eq(15), 
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In this time, we are able to think the following formula. 
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The reason of ii 01    is because if ii 010   , we are not able to represent the real gravity 

situation. In this time, the large number iN  is the number that befit the real gravity situation. 

The smallest number i0  is the positive number.  

Therefore, Eq(14) is 
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If we want to know the gravity acceleration of Newton’s limitation, 
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Therefore, the spherical solution of the quantum gravity is 
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3. CLASSICAL LIMITATION OF SPHERICAL QUANTUM SOLUTION 

In Eq(20), if 0h , 
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In this time, Eq(20) does the Schwarzschild solution.  
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In Eq(20), if 0M , 
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In this time, Eq(20) does the Minkowski space-time.  
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If the speed 0u  in gravity field, the proper time is in the classical quantum gravity solution 

0
2

222

2 



dt

dgdgdrg
u

rr  
 

2

2

2 ))(
2

1( dtM
rc

GM
d                                                                                                                                                   (25) 

In this time, if particles’ mass are im , the fusion energy is e , 
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In this time, if the binding energy of particle’s mass im  and jm is ije , the proper time is  
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4. CONCLUSION  

We found the spherical solution of the classical quantum gravity. Careful point is this theory is different 

from the other quantum theory. This theory is made by the Einstein’s classical field equation. 
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