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1. INTRODUCTION 

Resonances offering a variety and peculiarities of physical patterns of phenomena exist in any branch 

of physics from molecular physics to elementary particle physics. The concept of resonance is one of 

fundamental concepts in quantum physics. We can attach a broad physical meaning to the term 

resonance, including stable levels and implying their effect on scattering processes [1, 2]. 

Resonances play a special role in the physics of irreversible processes. In this case, in accordance with 

the Poincare theorem [3], resonances are responsible for nonintegrability of most dynamic systems. A 

theoretical explanation of resonances and their parameters can be constructed on the basis of forces of 

interaction between particles that are treated as elementary particles in such processes. For example, 

resonant processes in atomic physics are determined by the forces of interaction between electrons and 

nuclei, while resonances in nuclear physics are determined by forces acting between nucleons. A 

resonance in scattering is any peak on the experimental curve describing the scattering cross section. 

The resonance is characterized by the moment, parity, spin, lifetime, etc. Collisions of electrons with 

molecules often result in the formation of metastable negative molecular ions, which are also 

traditionally referred to as molecular resonances [4-11]. In this case, since atoms move slowly as 

compared to electrons, the electron + molecule system can be regarded as a quasi-molecule whose 

electron shell at each instant corresponds to a quasistationary state of such a quasimole-cule. This is in 

accordance with the well-known adia-batic approximation in quantum mechanics. In this 

approximation, various electron transitions (excitation, ionization, charge transfer) are hampered for 

collisions of electrons, atoms, or ions with molecules under ordinary conditions. The necessary 

condition for such a charge transfer [5, 6] is ∆E∆Ƭ~ħ, where ∆E is the change in the quasimolecule 

energy and ∆Ƭ is the collision time. Thus, for slow collisions, when the value of ∆Ƭ is large, transitions 

can occur only if ∆E is small; i.e., two states of the quasimolecule before and after the collision must 

be close and such a process can also be treated as a resonant process. Such a treatment of a resonance 

reveals the relation between equilibrium and dynamics on the one hand and the physics of dissipative 

processes on the other hand [12]. 

The importance of resonant processes is determined by the fact that all practical applications of 

experimental studies are based on resonances since it is resonant processes that are characterized by 

large cross sections or long lifetimes as compared to nonresonant processes and play an important role 

in low-temperature plasmas (resonant processes determine the emergence and disappearance of excited 

and charged particles, i.e., determine optical and electrical properties of a plasma), in controlled 

thermonuclear synthesis, mu-catalysis, and so on [4-12]. 
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For example, in laser physics, molecular reactions, wich produce the excited molecules; can be 

effectively used in chemical lasers if they have a number of the following salient features [13-15]: 

1. The thermal effect and rate constants in these reactions have to be high enough and 

2. a considerable part of the energy released must transver to the energy of reaction products. 

It is not surprising, then that the practical demands for extending the spectral range and increasing the 

power of chemical lasers have simulated and active search for such chemical reactions wich can be 

described accurately and completely on a base of experimental investigations. Therefore, at present 

theoretical methods of investigation of elementary processes are attracting considerable attention [5 

11,13-15]  

Proceeding from the theory of collisions in a two-body system in which the target molecule is regarded 

as a force center, the following type of resonances can be distinguished [4-11]. 

1. A form resonance appears in the case when the impinging electron is trapped to a quasi-stationary 

level separated from the level in the continuum by a centrifugal barrier formed by a combination of 

attractive and repulsive fields of the target molecule. This type of resonance appears only when the 

electron possesses an angular momentum relative to the target molecule. In the case of low-energy 

s scattering (l = 0), electron cannot be trapped and form resonance is absent. 

2. A vibrationally excited resonance appears when the impinging electron excites vibrations of the 

target molecule and is temporally bound. In this case, the kinetic energy of the electron is directly 

transformed into the vibrational energy of motion of the nuclei of the negative molecular ion; thus, 

this type of resonance is associated with violation of the Born-Oppenheimer principle. The lifetimes 

of such resonant states are extremely long (especially for polyatomic molecules) and attain tens of 

microseconds. 

3. An electron-excited resonance is formed when the projectile electron excites the electron system of 

the target molecule and also becomes temporally bound. In this case, the detachment of an electron 

is impossible as long as the molecule remains in the excited state. Nevertheless, an electron still 

may be detached if closed and open channels are coupled. 

Theoretical description of such resonances appearing as a result of formation of negative metastable 

ions is presented in [4-11] on the basis of the theory of scattering in a two-body system. In these works, 

resonances are defined as complex poles of the scattering matrix 1 continued to the non-physical energy 

sheet or as poles of an analytic continuation of the Green function. Collisions between electrons and 

molecules occurring without the formation of intermediate complexes as well as collision processes at 

thermal energies of impinging electrons, in which a nonmonotonic energy dependence of scattering 

cross section is also observed, remain unstudied. In the latter case, the application of standard techniques 

for calculating cross sections is unjustified in view of violation of the Born-Oppenheimer approximation 

[4-6]. The application of the theory of collisions in a two-body system for calculating such processes 

encounters considerable difficulties since the system considered here is essentially a many-particle 

system [13, 14]. 

For this reason, we will describe resonant processes occurring during collisions of an electron with 

molecules by using a more consistent approach based on the quantum theory of scattering in a few-

particle system [13, 14]. The main approximation in this case is that the interaction of the projectile 

electron with the electrons and nuclei of the target molecule is replaced by the interaction of the 

electrons with the atoms of the molecule, the atoms being treated as force centers. Thus, a complex 

many-particle system consisting of the electron and the nuclei is replaced by a system of few interacting 

bodies, which can be described with the help of Faddeev equations [13]. Naturally, this approximation 

imposes certain constraints on the energy of the projectile electron: this energy should not be higher 

than that the ionization energy of the atoms constituting the molecule. However, it is precisely this 

energy range that is interesting in connection with the presence of resonance peaks in the effective cross 

sections of collisions of electrons with various molecules [4-11]. 

In such a formalism, a resonance in a three-particle system is determined by two-particle resonances 

under certain conditions [1, 13, 14]. Thus, the reason for the emergence of three-particle resonances is 

the existence of resonant states in paired subsystems. This not very popular point of view is due to the 

fact that such a coupling does not exist always and cannot be determined explicitly even when it is 
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present. This was demonstrated for the first time in nuclear physics and in elementary particle physics 

where the interaction between particles leading to the existence of resonances is determined by the 

exchange between the particles of the same resonances; thus, resonances produce themselves [1, 2]. 

In atomic physics, coupling between resonances is observed for a large number of phenomena (such as 

scattering of electrons by molecules, coupling between clusters in biopolymer molecules, and in Bose 

condensate) [4-7, 14, 15]. In this type of coupling, two-particle resonances lead to a series of three-

particle resonance. A peculiar feature of this phenomenon is that the stronger the two-particle resonance, 

the larger the number of three-particle resonances produced by it. Experiments show [1, 14, 15] that 

such resonant states in many-particle systems lead to anomalously high rates of chemical reactions, 

dynamic coupling of noninteracting particles, etc. [14-16]. The importance of studying such states is 

directly associated with determining the binding energy of a system of N bodies using information on 

subsystems of this many-particle system, i.e., the construction of dependences EN = f (EN−1, EN−2, ...) 

and the determination of the conditions for the formation of a coupled many-particle system provided 

that some subsystems are not coupled [16]. 

The physical foundation of the effect considered here is presented in [1], where the following aspects 

are revealed. 

1. The effect of two-particle resonances on the spectrum of a three-particle system is clearly 

manifested; i.e., a two-particle resonance can radically reconstruct the discrete spectrum of three 

particles. However, not every two-particle resonant state can reconstruct the spectrum of three 

particles, but only the state whose size rres _ (2mij |e0|)1/2 is much larger than the range r0 of its 

action (e0 is the binding energy and mij is the reduced mass of a pair of particles. Such a resonance 

can only be an s resonance(Ɩ = 0) since such resonant states strongly differ in size from other types 

of resonant states. For𝑒0 → 0, size𝑟𝑟𝑒𝑠 → ∞.The size of a resonant state is manifested in the 

scattering of particles in the form of a large scattering length a, which is equal to the size of this 

resonant state for small e0. Analyzing resonant states from the standpoint of their size, we can 

observe that all these states sharply differ from the resonance considered above. For example, the 

state occupied by the system in a partial wave with Ɩ ≠ 0 has a size on the order of the range of 

forces due to the centrifugal barrier; a compound resonance is not large either. Thus, a two-particle 

s level with a small binding energy occupies an exceptional position among resonant states as 

regards its size. 

2. Three-particle levels are stable and their number is proportional to ln(a/r). It can be proved [1, 13-

15] that the interaction responsible for the emergence of these levels has the form 𝑈~ 𝐴
𝑅2⁄ , where 

R2 = 2
3⁄ (𝑟1

2 + 𝑟2
2 + 𝑟3

2), 𝑟𝑖is the distance between a pair of particle, and is operative in the 

interval(r0, a) (Fig. 1). In the general case, the constant A of this interaction is a function of quantum 

numbers of the three-particle state, angular momentum, parity, and symmetry relative to the 

transposition of the particles. The value of A is estimated in [1,14, 15]. The strongest attraction 

should be observed for the orbital angular momentum L = 0 for three particles since centrifugal 

forces are absent in this case. The symmetry of this state must be maximal; otherwise, the wave 

function has nodes and the coupling becomes weaker. 

 

Figure1. Effective potential responsible for resonances in a three-body system 
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3. Centrifugal forces suppress the effect. 

4. Such states possess the maximal symmetry. 

5. Triple and many particles forces do not influence on the effect. 

6. The addition of a particle to the three-particle system suppresses the effect. 

7. The particle charge has no influence on the effect which is manifested less clearly in this case. 

8. For particles with spins, the effect is also pronounced less clearly. 

It should be noted that such peculiar states of three particles are independent of the specific form of the 

potential (i.e., independent of the forces of interaction between particles) and are universal in the sense 

that these states reflect only the fact of existence of a resonance. Thus, irrespective of the form of pair 

forces between the particles, if it leads to a low-energy two-particle s resonance, this automatically leads 

to the formation of a family of three-particle resonances. Consequently, the reason for the emergence 

of three-particle level lies in the production of long-range interaction between three particles by a two-

particle resonance with a large spatial size. Thus, the number of resonant states in a three-particle system 

is determined only by specific properties of paired subsystems. The masses of the particles have the 

strongest influence on the effect. The following three characteristic regimes can be singled out: the 

mode of identical particles, the mode of a heavy center, and the molecular mode [1, 13-15]. The heavy-

center mode takes place when the masses of two particles are of the same order ml, while the mass mh 

of the third particle is much larger. The pair of light particle has no energy level and these particles do 

not interact with each other, but interact with the heavy particle through the attracting potential. In this 

case, if the mass of the third particle is infinitely large, we are dealing with the case of a pair of particles 

in a force center; naturally, three-particle levels do not emerge in such a system. In this case, the heavy 

particle does not respond to the motion of the noninteracting particles moving independently from each 

other in the field of the stationary heavy particle. Consequently, in this limit, the binding energy of the 

three particles is the additive sum of the binding energies of two-particle systems. However, for a finite 

mass of the heavy particle, the motion of all the three particles is correlated, so that the center of mass 

of the system remains at rest. In this case, the heavy particle responds to a change in the position of 

other particles whose motion becomes correlated in spite of the absence of a direct interaction between 

them. Thus, dynamic correlation in the motion of coupled particles can be treated as a sort of attraction. 

It should be noted that such a dynamic attraction also appears in the case when repulsive force act 

between the particles coupled in this way. In this case, dynamic attraction compensates mutual repulsion 

and leads to stabilization of the system. This can be clearly seen, for example, for the ion of positronium 

𝑒+𝑒−𝑒−  [14-16]. In this case, for any finite mass of a heavy center, the number of levels is 

𝑁~
𝑚𝑙

𝑚ℎ
𝑙𝑛

1

𝑒𝑜𝑚𝑙𝑟0
2 

A special feature of this mode is that extremely shallow levels in paired subsystem are required for the 

existence of three-particle levels in contrast to the molecular mode, where the requirements imposed on 

paired levels are much less stringent and more realistic. 

In the molecular mode, when a light particle has shallow levels in the interaction with the heavy 

particles, the number of levels is  

𝑁~√(
𝑚𝑙

𝑚ℎ
)𝑙𝑛

1

|𝑒𝑜|𝑚𝑙𝑟0
2 

and the potential of the interaction produced by the light particle has the form 

𝑉~
−0.32

𝑚𝑙𝑟ℎℎ
2 , 

which is precisely the energy of the molecular energy level. The simple example of this mode is a 

system consisting of an electron and two neutral atoms. The molecule formed in this way differs from 

a conventional molecule in that its nuclei vibrate in region R whose size is determined by the energy e0 

of the shallow paired level; in addition to vibrational levels, this system also has a rotational spectrum. 

Thus, two-particle levels in this mode lead to the formation of a series of not only vibrational, but also 

rotational levels [1, 13-15]. It should be noted that such peculiar resonance states are manifested in a 
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wide range of conditions and form a stable phenomenon which can be reliably identified and confirmed 

experimentally. 

2. BASIC EQUATIONS AND MAIN APPROXIMATION 

We will analyze these peculiar resonant states quantitatively in the case of the molecular mode using 

the Faddeev integral equations [13]. In the given approximation (three particles, viz., two atoms and an 

electron), these equations are formulated for three parts into which the total wave function of the three-

body system splits, 

𝛹 = ∑ 𝛹𝑖 ,

3

𝑖=1

 

Each part corresponds to possible divisions of the system of three particles into noninterecting 

subgroups. In the momentum space, in the case of scattering of particle 1 from the coupled pair (2,3) 

the equations have the form [13,14] 

𝛹 = 𝜙𝑖𝛿𝑖1 − 𝐺0(𝑍)𝑇𝑖(𝛹𝑗 + 𝛹𝑘),      𝑖, 𝑗, 𝑘 = 1,2,3; 3,1,2; 2,1,3;                                                         (1) 

Here, ∅1 describes the initial state of the three body systems: free motion particle 1 and the bound state 

of pair (2,3); 𝐺0(𝑍) = (𝐻0 − 𝑍)−2, 𝑍 = 𝐸 + 𝑖0, where 𝐻0 is the operator of free motion of three 

particles; 𝐸 is the total energy of three-body system, which is equal to the sum of kinetic energy of 

projectile 1 and the binding energy of pair (2,3); Ti is a paired T-matrix that can be unambigously 

defined in terms of the paired interaction potential Vi with the help of the Lippmann-Schwinger 

equations 

𝑇𝑖 = 𝑉𝑖 + 𝑉𝑖𝐺𝑖𝑇𝑖 ,    𝐺𝐼 = (ℎ𝑖 − 𝑍𝑖)−1,      ℎ𝑖 = ∆𝑖 + 𝑉𝑖                                                                         (2) 

To describe the motion of three particles in center-of-mass system we use the generally accepted Jacobi 

coordinates. It should be borne in mind that we must use as integration variables in Eq. (1) a certain 

system of variables which is found to be most convenient. For example, in the integral corresponding 

to the expression𝐺0𝑇1𝛹2, it is more convenient to take 𝐾2 and 𝑃2 as integration variables. In this case, 

variables 𝐾1and 𝑃1 determining the kernel of operator 𝑇1 should be expressed in terms of variables 𝐾2 

and 𝑃2. Sometimes, it is more convenient to use variables 𝑃1 and 𝑃2 in the same situation. Paired T 

matrices 𝑡𝑖(𝑘𝑖 , 𝑘𝑖
0; 𝑍) appearing in the kernels of the equations have singularities in variable Z: the poles 

corresponding to the discrete spectrum of paired subsystems and a cut along the positive part of the real 

axis generated by the spectrum of the two-body problem. The explicit form of these singularities gives 

the spectral representation of matrix T. The poles of the T matrix corresponding to the discrete spectrum 

generate singularities in the wave function components 𝛹𝑖;  separating these components, we obtain the 

representation 

𝛹𝑖(𝑘𝑖 , 𝑝𝑖; 𝑝𝑖
𝑜) = 𝜑(𝐾𝑖)𝛿(𝑝𝑖 − 𝑝𝑖

𝑜) − 𝐵𝑖(𝑘𝑖 , 𝑝𝑖; 𝑝𝑖
𝑜; 𝑍)/(

𝑝𝑖
2

2𝑛𝑖
⁄ +

𝑘𝑖
2

2𝑚𝑗𝑘
⁄ − 𝑍),                                                        (3) 

Where 

𝐵𝑖(𝑘𝑖 , 𝑝𝑖; 𝑝𝑖
𝑜; 𝑍) = ∑[

3

𝑗=1

𝑄𝑗(𝑘𝑖 , 𝑝𝑖; 𝑝𝑖
𝑜; 𝑍) − 𝜑𝑗(𝑝𝑗)𝑅𝑗𝑖(𝑘𝑗; 𝑝𝑖

𝑜; 𝑍)/(
𝑝𝑗

2

2𝑛𝑗
⁄ − 𝑘𝑗 − 𝑍)], 

and 𝑄𝑗 , 𝑅𝑗𝑖 are smooth function of their variables. Such a division of singularities appears automatically 

in the numerical solution of integral equations. To define functions 𝑄𝑗and 𝑅𝑖𝑗unambiguously, we can 

proceed as follows. We substitute𝛹𝑖in form (3) into initial equations (1) and equate the coefficients of 

identical singularities. This gives the equations for these functions which can be used for expressing 

explicitly all main characteristics of the three-body problem: wave function, elements of the S matrix, 

as well as the amplitudes and cross sections of all processes occurring in the three-body system. Thus, 

the cross section of the elastic scattering process has the form 

𝑑𝜎11
𝑑𝜃

⁄ = (2𝜋)4𝑛1|𝑅11|2, 

the cross section of rearrangement processes is given by 

𝑑𝜎1𝑖
𝑑𝜃

⁄ = (2𝜋)4𝑛𝑖𝑝𝑓|𝑅1𝑖|
2/𝑝1

0 
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and the cross section of the process of decay into three free particles have the form 

                                                      
𝑑𝜎1→3

𝑑𝜃𝑑𝑝⁄ = (2𝜋)4𝑛𝑖𝑝𝑓|𝐵0𝑖|
2/𝑝1

0, 

where 

𝑝𝑓
2 = 2𝑛𝑖(

𝑝𝑖
02

2𝑛𝑖
⁄ − 𝑘1

2 − 𝑘𝑖
2) 

The main advantage of the Faddeev equations (1) is that  

(i) the solution of this equation gives simultaneously the amplitudes and cross sections of all processes 

occurring in the three-particle system; 

(ii) the accuracy in determining the bound state from the solution of the Faddeev equations is much 

higher than the accuracy obtained by solving the Schrodinger equations (this peculiarity is 

associated with the fact that Eqs. (1) were formulated for the wave function components and, hence, 

take into account possible asymptotic forms of the three-particle system); 

(iii) these equations make it possible to carry out a correct (from the standpoint of mathematics) analysis 

of scattering processes, in which all three free particles are in the initial state [12, 13]; this is 

impossible in all approaches proposed earlier [5-11]: 

$$ 

1 + 2 + 3 \rightarrow \begin {cases} 

{ 

\ 1 + (2,3) & $-elastic scattering processes $ \cr 

\ 1 + (2,3)^* & $-excitation processes $ \cr 

\ 3 + (1,2)^* & $-rearrangment processes $ \cr 

\ 2 + (1,3)^* & $ with excitation $ \cr 

\ 1 + 2 + 3 & $-ionization processes $ \cr 

\end{cases} 

$$ 

In this case, we have the following representation for the wave function [13-15]: 

𝛹0(𝑘; 𝑝; 𝑘0, 𝑝0) = 𝛿(𝑘 − 𝑘0)𝛿(𝑝 − 𝑝0) −
∑ 𝑀𝑖𝑗 (𝑘; 𝑝; 𝑘0, 𝑝0;

𝑘02

2𝑚
+

𝑝02

2𝑛
+ 𝑖0)𝑖,𝑗

𝑝2

2𝑛
+

𝑘2

2𝑚
−

𝑘02

2𝑚
+

𝑝02

2𝑛
+ 𝑖0

, 

where functions Mi, j satisfy the following system of equations: 

𝑀𝑖𝑗(𝑍) = 𝛿𝑖,𝑗𝑇𝑖(𝑍) + 𝑇𝑖(𝑍)𝐺0(𝑍) ∑ 𝑀𝑘𝑗(𝑍)

𝑘≠𝑖

 

For cross sections of these processes, we obtain the following expression [13,15] 

𝑆00(𝑘, 𝑝; 𝑘′, 𝑝′) = 𝛿(𝑘 − 𝑘′)𝛿(𝑝 − 𝑝′) − 2𝜋𝑖𝛿(
𝑝2

2𝑛
+

𝑘2

2𝑚
−

𝑝′2

2𝑛
−

𝑘′2

2𝑚
) 

∑ 𝑀𝑖𝑗 (𝑘; 𝑝; 𝑘′, 𝑝′;
𝑘′2

2𝑚
+

𝑝′2

2𝑛
+ 𝑖0) ;

𝑖,𝑗

 

corresponds to processes in which three free particles are in the initial and final states 

𝑆0𝑠𝑖
(𝑘, 𝑝; 𝑝𝑖

′) = 2𝜋𝑖𝛿(
𝑝2

2𝑛
+

𝑘2

2𝑚
+ 𝑘𝑠𝑖

2

−
𝑝𝑖

′2

2𝑛𝑖
) ∑ 𝑄𝑘𝑖

𝑠𝑖 (𝑘, 𝑝; 𝑝𝑖
′; −𝑘𝑠𝑖

2 +
𝑝𝑖

′2

2𝑛𝑖
− 𝑖0)

𝑘

+ ∑ 𝜓𝑠𝑘
(𝑘𝑘)𝑅𝑘𝑖

𝑠𝑘𝑠𝑖 (𝑝; 𝑝𝑖
′; −𝑘𝑠𝑖

2 +
𝑝𝑖

′2

2𝑛𝑖
+ 𝑖0) ,

𝑠𝑘
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𝑆𝑠𝑖0(𝑝𝑖; 𝑘′, 𝑝′) = 2𝜋𝑖𝛿(−𝑘𝑠𝑖
2 +

𝑝𝑖
′2

2𝑛𝑖
−

𝑝′2

2𝑛

−
𝑘′2

2𝑚
) ∑ 𝑄𝑗𝑖

𝑠𝑖 (𝑝𝑖; 𝑘′, 𝑝′;
𝑘′2

2𝑚
+

𝑝′2

2𝑛
+ 𝑖0)

𝑗

+ ∑ 𝜓𝑠𝑗
(𝑘𝑗

𝑖)𝑅
𝑖𝑗

𝑠𝑖𝑠𝑗
(𝑝𝑖; 𝑝𝑖

′; +
𝑘′2

2𝑚
+

𝑝′2

2𝑛
+ 𝑖0) ,

𝑠𝑗

 

correspond to processes in which a coupled pair of particles sj is present in the initial or the final state. 

The equations for functions 𝑄𝑗, 𝑄𝑗, and 𝑅𝑖𝑗are analogous to the equations for 𝑀𝑖𝑗and are given in [13-

15]. It should be noted that potentials do not appear explicitly in integral equations (1); these equations 

contain a more general characteristic, viz., T matrices, which are connected with the potentials of the 

Lippmann-Schwinger equations (2). Consequently, although potentials are formally used in the given 

method, we essentially model T matrices, which are constructed on the basis of the Bateman method 

[13, 14] suitable for any local potential. This method considerably simplifies numerical solution of the 

system of integral equations (1) and sometimes even leads an analytic solution [13-17]. Integral 

equations (1) possess good properties (from the mathematical point of view) such as the Fredholm 

property and unambiguous solvability only under certain conditions imposed on two-particle data [13]: 

(i) paired potentials 𝑉𝑖(𝑘, 𝑘0),which are nonlocal in the general case, are smooth functions of 𝑘, 𝑘0and 

satisfy the condition 

|𝑉𝑖(𝑘, 𝑘′)| ≤ (1 − |𝑘 − 𝑘′|)1−𝜖 ,       𝜖 > 0; 

(ii) point Z = 0 is not a singular point for Eqs. (2); i.e., all three scattering lengths in pair channels 

are finite; 

(iii) the positive two-particle spectrum is continu- ous. This condition is essential for nonlocal potentials 

since positive eigenvalues may appear only in this case, and this condition is satisfied virtually for all 

physical processes. 

Coulomb potentials and hard-core potentials do not satisfy the first condition: 

Coulomb potentials lead to a singularity of the type |𝑘 − 𝑘0|−2in T matrices, while hard-core potentials 

result in a slow decrease in the T matrix for large momenta. When the second condition is violated, the 

Fredholm property of Eqs. (1) is lost for Z = 0, which leads to the above-mentioned effect of emergence 

of an infinitely large discrete spectrum in a three-body system under certain conditions. A similar 

situation emerges in the case of scattering of electrons from diatomic molecules, for which the Efimov 

levels were experimentally observed for the first time. The approximation considered here reproduces 

these experimental results in a quite natural way. 

It should be emphasized once again that the give approximation appears quite reasonable for values of 

the impinging electron energy lower than the electron excitation energy of the molecule.  

As the initial data in such a formulation of the problem, we use pair interaction potentials, masses, and 

energies of colliding particles. For potentials of pair interaction of electrons with atoms of the molecule, 

we used potentials of the form 

𝑉(𝑟) =
𝜆 exp(−𝛽𝑟)

𝑟⁄                                                                                                                                                                    (4) 

whose parameters were determined on the basis of the electron binding energy at a negative ion, 

scattering lengths, and effective radius. Allowance for spin (in the case of homonuclear molecules) was 

made as follows. For the scattering length, we used the quantity [5, 6, 14-17] 

1

𝑎
=

1

𝑎1
=

1

𝑎2
=

1

4
(

3

𝑎𝑡
+

1

𝑎𝑠
), 

where𝑎𝑡 and 𝑎𝑠are the triplet and singlet scattering lengths, respectively. Pair potentials of interaction 

between atoms in molecules was simulated by the Morse potentials 

𝑉(𝑟) = 𝐷(1 − exp(−𝛼(𝑟 − 𝑟0))),                                                                                                       (5) 
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whose parameters were determined on the basis of spectroscopic data [18]. 

Numerical solution of integral equations (1) involves considerable difficulties because the kernels of 

integral equations (1) contain the same singularities [13-15] but here, we propose a quite universal 

method for solving system of equations (1) for calculating bound states as well as scattering states in 

systems with arbitrary masses, which interact via arbitrary pair short-lived potentials that can also be 

defined numerically. In the method proposed here, the domain of an unknown function is divided into 

a number of intervals on each of which the function is approximated with the help of corresponding 

interpolation polynomials. The method for solving system of equations (1) is a modification of the 

standard method for solving integral equations, in which the integral on the right-hand side is replaced 

with the help of a quadratures formula for solving Eq. (1). As a result, we arrive at a system of algebraic 

equations for values of the sought function at the nodes of the quadratures formula. In the proposed 

method, the domaine of the sought function is divided into a number of segments, on each of which the 

function is determined with the help of interpolation polynomials reproducing the correct behavior of 

the function in the vicinity of the above singularities, after which integration is carried out using 

quadratures formulas. A package of applied programs was used for realization of the proposed 

numerical method for solving system of integral equations (1) [13,15].  

Computational difficulties encountered in calculation of cross sections in the given approximation are 

mainly associated with the long-range Coulomb interaction potentials. It was mentioned above that in 

this case the integral Faddeev equations cannot be applied directly; either these equations should be 

modified, or the differential formulation of the Faddeev equations in the coordinate state should be used 

[13-15]. In case for three charged particles Faddeev equation in the coordinate space, which have the 

form [13-15] 

(−Δ𝑥𝑖
− Δ𝑗𝑖

+ 𝑉𝑖(𝑥𝑖) − Ε)Ψ𝑖 = −𝑉𝑖 ∑ Ψ𝑗𝑗≠𝑖 ,                                                                                                   (6) 

Where 

𝑉𝑖 =
𝑛𝑖

𝑥𝑖
⁄ + 𝑉𝑠𝑡(𝑥𝑖), 𝑛𝑖 =

𝑞𝑘𝑞𝑗

√(2𝑚𝑘𝑗)
,𝑥𝑖 = √(

2𝑚𝑗𝑚𝑘

𝑚𝑗+𝑚𝑘
) (𝑟𝑗 − 𝑟𝑘), 𝑦𝑖 = √(

2𝑚𝑖(𝑚𝑗+𝑚𝑘)

𝑚𝑖+𝑚𝑗+𝑚𝑘
) 𝑟𝑖 −

𝑚𝑗𝑟𝑗+𝑚𝑘𝑟𝑘

𝑚𝑗+𝑚𝑘
 

and the coordinates are connected via the relations 

𝑥𝑖 = 𝑐𝑖𝑗𝑥𝑗 + 𝑠𝑖𝑗𝑦𝑗 ,              𝑦𝑖 = 𝑠𝑖𝑗𝑥𝑗 + 𝑐𝑖𝑗𝑦𝑗 , 

𝑠𝑖𝑗
2 =

𝑚𝑘 ∑ 𝑚𝑘𝑘

(𝑚𝑖 + 𝑚𝑗)(𝑚𝑗 + 𝑚𝑘)
, 𝑠𝑖𝑗

2 + 𝑐𝑖𝑗
2 = 1 

Vst being pair short-range interaction potentials defines by (4) and (5). 

The relation between the momentum and coordinate representations is defined by the Fourier 

transformation, 

Ψ(𝑘𝑖 , 𝑝𝑖) = (2𝜋)−3 ∫ 𝑒𝑥𝑝 − 𝑖(𝑘𝑖𝑥𝑖 + 𝑝𝑖𝑦𝑖)Ψ(𝑥𝑖 , 𝑦𝑖) 𝑑𝑥𝑖𝑑𝑦𝑖 

To obtain a unique solution of integrodifferential equations in the coordinate space, we must add the 

boundary conditions, which have the form [13-15] 

Ψ𝑖(𝑥𝑖 , 𝑦𝑖)𝑥𝑡𝑦𝑡→0 → 0,                                                                                                                             (7)  

Ψ𝑖(𝑥𝑖 , 𝑦𝑖)
𝜌=√𝑥2+𝑦2→∞

→ ∅𝑖(𝑥𝑖) exp(𝑖𝑘𝑖𝑦𝑖 − 𝑖𝑤𝑖
0) + ∑ 𝐴𝑖𝑗(ŷ𝑗 , 𝑘�̂�)𝑗 ∅𝑖(𝑥𝑗)

exp (𝑖𝑗|𝑦𝑗|+𝑖𝑤𝑖𝑗)

|𝑦𝑗|
+

𝐴0𝑖(�̂�, 𝑘�̂�)
exp(𝑖√𝐸|𝑋|+𝑖𝑤0)

|𝑋|
5
2

,                                                                                                                                                            (8) 

𝑤𝑖
0 =

𝑛𝑖

2|𝑘𝑖|
ln[|𝑘�̂�||𝑥�̂�| − −(𝑘𝑖 , 𝑥𝑖)],           𝑤𝑖𝑗 = ∑

𝑛𝑘

2|𝑠𝑗𝑘√𝐸𝑘

𝑙𝑛2

𝑘≠𝑗

√𝐸𝑘|𝑦𝑘|, 

𝑤0 = −
|𝑋|

2√𝐸
∑

𝑛𝑖

|𝑥𝑖|
𝑙𝑛2√𝐸|𝑋|,

𝑖

          𝑛𝑖 =
𝑘𝑞𝑖𝑞𝑗

√(2𝑚𝑖𝑗

,                  𝐸𝑘 = 𝐸 − 𝑘𝑗 ,                       
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A large number of various numerical methods have been developed on the basis of approximation of 

components by bicubic Hermite splines, quintet basis splines, etc. However, an effective, reliable, and 

universal algorithm of numerical solution of Eqs. (6) with boundary conditions (7) and (8) in the 

coordinate space has not been developed for the following reasons. 

First, an algorithm of numerical solution for processes with three free particles in the initial and final 

states does not exist in view of rather complex boundary conditions.  

Second, point-by-point convergence of the obtained result to the exact solution upon a decrease in the 

mesh size cannot be proved analytically in any of the known numerical methods based on finite different 

approximation. 

Consequently, the application of the mesh method in the polar coordinate system [14] for solving 

numerically the system of coupled integrodifferential equations (6) in partial derivatives with boundary 

conditions (7) and (8) appears as most justified since analytic solutions also exist in this case for some 

potentials determining the resonant states under investigation [13,14,22]. This makes it possible to 

monitor the accuracy of the solutions obtained by the numerical method. 

Let us consider the geometrical (topological, spatial) characteristics of the above-mentioned peculiar 

resonant states. Since it is quite difficult to study these characteristics experimentally in the case of 

electron collisions with molecules, we will consider the systems that are accessible for experimental 

studies, viz., clusters of molecules of inert gases [28]. 

It should be noted that these molecular clusters consisting of atoms of helium, lithium, and a number of 

inert gases attract attention of both theoreticians [29] and experimentalists [28] primarily due to applied 

studies such as super fluidity, superconductivity, Bose condensation, chemistry and physics of clusters, 

laser physics (i.e., the possibility of developing 𝐻𝑒2
+molecular laser), as well as the possibility of 

observing such a peculiar quantum effect in real systems. 

However, a direct theoretical analysis of even the simplest of the above systems, viz., He3
 consisting of 

three helium nuclei and six electrons, is an extremely complicated problem. 

To analyze the He3
 system, we consider the cluster approximation in which this system is replaced by 

a simpler system consisting of three force centers (helium atoms). The validity of this approximation 

for calculations of bound states is obvious since the difference between the binding energy of the system 

and the ionization energy of the atom is several orders of magnitude. It is well known that helium atoms 

are bosons; consequently, the problem boils down to analysis of three pairwise identical neutral spinless 

particles. To solve this problem, we propose mathematically correct model-free methods in the theory 

of scattering in the three-body system [13-15]. 

It should be emphasized that virtual levels in paired subsystems in the case of complex many-particle 

systems do not lead to the emergence of resonant states in a many-particle system [1]. This, however, 

does not mean that this effect is absent in these systems since it can be due to many-particle and not 

two-particle virtual states. 

For this reason, we will consider the interpretation of a number of peculiar properties of systems 

𝐻𝑒3
,𝐴𝑟3, 𝐾𝑟3, 𝑁𝑒3, 𝑋𝑒3, 𝐿𝑖3, and 𝑅𝑛3 precisely on the basis of the three-particle approximation. It should 

be noted that a large number of theoretical and experimental methods exist for studying clusters 

consisting of atoms of helium and a number of inert gases. Most methods are intended for studying 

bound states; however, scattering states [28-31], which are most informative for confirming the 

existence of peculiar resonant states, were practically ignored. 

It was stated by a number of authors [30] that the main difficulties in studying the He3 system are 

associated with its low binding energy (1 mK), an unusually large size of the excited state (~150Ao), 

and a strong repulsion at small distances. However, the results obtained in [15, 31], where an analogous 

three-particle approximation was used for calculating the 𝐻𝑒3
system, differ from the statements made 

in [30]. 

For this reason, it would be also interesting to verify the conclusions drawn in [30] on the basis of the 

three-particle approximation with the short-range pair potentials used in [32]. The main purposes of this 

investigation are 
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(i) determining the number of possible resonant states; 

(ii) clarifying the role of pair interaction potentials in the characteristics of these states; 

(iii) estimating the effect of repulsion at short distances, which can be approximated by a hard core in 

the model for the boundary conditions [13-15] imposed on the characteristics of these peculiar states. 

Thus, the theoretical analysis of the He3
 system is reduced to solving equations in the quantum theory 

of scattering in a three-body system, which makes it possible to use the well-known methods [13-15]. 

In contrast to [30], where resonances in a three-particle system were studied using the Faddeev 

equations on the basis of analytic continuation of the scattering matrix to the range of complex energy 

values, we are using here direct numerical solution without an analytic continuation. 

In this case, after the separation of angular variables, the Faddeev equations (6) in the coordinate space 

for the He3
system in the three-particle approximation with pair short-range potentials [32] have the 

form [13-15] 

[𝐻𝜆,𝑙 − 𝑧]Ψ𝑎𝐿(𝑥, 𝑦) = −𝑉(𝑥)(Ψ𝑎𝐿(𝑥, 𝑦) + ∑ ∫ Ψ𝑎′𝐿(𝑥′, 𝑦′)ℎ𝑎𝑎′
𝐿 (𝑥′, 𝑦′, 𝜂)𝑑𝜂

+1

−1𝑎′ ),                                  (9) 

Where 

𝐻𝜆,𝑙 = −
𝜕2

𝜕𝑥2
−

𝜕2

𝜕𝑦2
+

𝑙(𝑙 + 1)

𝑥2
+

𝜆(𝜆 + 1)

𝑦2
 

𝑧 = Ε + 𝑖0,      𝐿 = 𝑙 + 𝜆,      𝑎 = (𝑙, 𝜆), 

For calculations with a hard core in the model of boundary conditions, the right-hand side is equal to 

zero for x < c, where c is the core size. To obtain an unambiguous solution to the equations, we must 

preset boundary conditions (7), (8), 

Ψ𝑎𝐿(𝑥, 𝑦)|𝑥 = 0=0, Ψ𝑎𝐿(𝑥, 𝑦)|𝑥 = 0=0,                                                                                                          (10) 

which assume the following form in the boundary-condition model: 

Ψ𝑎𝐿(𝑐, 𝑦) + ∑ ∫ Ψ𝑎′𝐿(𝑥′, 𝑦′)ℎ𝑎𝑎′
𝐿 (𝑥′, 𝑦′), 𝜂𝑑𝜂 = 0

+1

−1𝑎′

 

𝑥′ = √𝑥2

4⁄ +
3𝑦2

4
⁄ − √3𝑥𝑦𝜂

2,
⁄            𝑦′ = √3𝑥2

4⁄ +
𝑦2

4
⁄ + √3𝑥𝑦𝜂

2,
⁄  

For 𝜌 → ∞ the boundary conditions in the case of short-range pair potentials can be written in the form 

[13] 

Ψ𝑎𝐿~𝜌→∞𝑎𝑎𝐿,𝑣 ∑ 𝜓𝑙,𝑣(𝑥)𝐻𝑣(√𝐸 − 𝐸2,𝑙,𝑣) + 𝐴𝑎𝐿(𝜃)
𝑒𝑥𝑝𝑖√𝐸𝜌+𝑖𝜋𝐿

2⁄

√𝜌𝑣                                                                   (11) 

where  𝛹Ɩ, 𝑣(𝑥)are the partial components of the wave functions of paired subsystems with binding 

energy 𝜀Ɩ𝑣; 𝜌 = √𝑥2 + 𝑦2;𝜃 = arctan 𝑦 𝑥⁄ 𝑎𝑎𝐿,𝑣and 𝐴𝑎𝐿(𝜃)are the scattering amplitudes of processes 

with two or three particles, respectively, in the final state; and 𝐻𝑣(𝑥)are the Hankel spherical functions. 

In calculations of bound states, the wave functions decrease quite rapidly at infinity; consequently, at a 

large distance𝑥 = 𝑅𝑥 , 𝑦 = 𝑅𝑦, the asymptotic boundary conditions can be replaced by the conditions 

𝜕𝑥Ψ𝑎𝐿|𝑥 = 𝑅𝑥

Ψ𝑎𝐿|𝑥 = 𝑅𝑥
= 𝑖√∈𝑣 

                                                               
𝜕𝑦Ψ𝑎𝐿|𝑦=𝑅𝑦

Ψ𝑎𝐿|𝑦=𝑅𝑦
= 𝑖√∈𝑣-E 

For the He3
  system in the three-particle approximation with angular momentum L = 0, we have  

𝐻𝜆,𝑙 = 𝐻0,𝑙 = −
𝜕2

𝜕𝑥2
−

𝜕2

𝜕𝑦2
+ 𝑙(𝑙 + 1) (1

𝑥2⁄ + 1
𝑦2⁄ ), 

where partial components l assume even values. 𝑙 = 0, 2, 4, ...; and the expression for functions 

ℎ𝑎𝑎
𝐿 , (𝑥, 𝑦, ƞ) is given in [13-15]. 
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The asymptotic behavior of the components of Eqs. (9) for scattering processes with short-range 

potentials can be described by the function [13-15] 

Ψ𝑙(𝑥, 𝑦; 𝑧) = 𝛿𝑙0𝜓𝑑(𝑥) [sin √𝑧 − 𝜖𝑑𝑦 + 𝑒𝑥𝑝 (𝑖√𝑧 − 𝜖𝑑𝑦) [𝑎0(𝑧) + 𝑜 (𝑦
−1

2⁄ )]] +
exp (𝑖√𝑧𝜌)

√𝜌
[𝐴𝑙(𝑧, 𝜃) +

𝑜 (𝜌
−1

2⁄ )],                                                                                                                                             (12) 

where 𝑎0(𝑧), 𝑧 = 𝐸 + 𝑖0 is the elastic scattering amplitude for 𝐸 > ԑ𝑑, and 𝐴Ɩ(𝐸, 𝜃) is the decay 

amplitude for 𝐸 > 0. We also assume that the helium molecule 𝐻𝑒2
 has only one bound state with 

binding energy  ԑ𝑑 < 0 and with the corresponding wave function 𝜓𝑑(𝑥). 

For processes of scattering, the scattering matrix for 𝑧 = 𝐸 + 𝑖0, 𝐸 > ԑ𝑑, the scattering phases and 

lengths in the s state can be expressed with help of the following formulas 

𝑆0(𝑧) = 1 + 2𝑖𝑎0(z), 

𝛿(𝑝) =
1

2
𝐼𝑚𝑙𝑛𝑆0(𝜖𝑑 + 𝑝2 + 𝑖0),        𝑝 > 0, 

𝐿𝑠𝑙 = − √3
2

⁄ lim
𝑝→0

𝑎0(𝑝)/𝑝 

To solve the system of equations (9) with boundary conditions (10), (12) numerically, we used the 

standard method described in detail in [13-15, 17]. For pair interaction potentials, we used potentials 

HFDHE2, HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with appropriate parameters [32], which 

reproduce in detail the main parameters of the corresponding molecules [18]. 

The results of calculation of the energy of bound states in systems He3
 and 𝐻𝑒3

∗with and without taking 

into account the hard core are given in Tables 1-4. 

Table1. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius 

for 𝐻𝑒3
 

Potential 𝐸𝐻𝑒3
∗ , 𝑚𝐾 ‖𝑓𝑐

∗‖2 𝐿𝑠𝑙 , Å < 𝑟𝐻𝑒3
>, Å < 𝑟3𝐻𝑒2

>
1

2⁄ , Å 

HFDHE2 -0.1171 0.2094 140 5.65 6.46 

HFD-B -0.1330 0.2717 137 5.48 6.23 

HFD-ID -0.1061 0.1555 139 5.80 6.64 

LM2M1 -0.1247 0.2412 132 5.57 6.35 

LM2M2 -0.1264 0.2479 131 5.55 6.32 

TTYPT -0.1264 0.2487 130 5.56 6.33 

Table2. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius 

for He3 in boundary-condition model 

Potential 𝐸𝐻𝑒3
∗ , 𝑚𝐾 ‖𝑓𝑐

∗‖2 𝐿𝑠𝑙 , Å < 𝑟𝐻𝑒3
>, Å < 𝑟3𝐻𝑒2

>
1

2⁄ , Å 

HFDHE2 -0.1170 0.2095 138 5.65 6.46 

HFD-B -0.1329 0.2717 135 5.48 6.23 

HFD-ID -0.10612 0.1555 134 5.80 6.64 

LM2M1 -0.12465 0.2412 130 5.57 6.35 

LM2M2 -0.12641 0.2479 131 5.55 6.32 

TTYPT -0.12640 0.2487 131 5.56 6.33 

Table3. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius 

for 𝐻𝑒3
∗ 

Potential 𝐸𝐻𝑒3
∗ , 𝑚𝐾  ‖𝑓𝑐

∗‖2 𝐿𝑠𝑙 , Å < 𝑟𝐻𝑒3
∗ >, Å < 𝑟3𝐻𝑒3

∗ >
1

2⁄ , Å 

HFDHE2 -1.6653 0.9077 135 55.26 66.25 

HFD-B -2.743 0.9432 134 48.33 57.89 

HFD-ID -1.0612 0.8537 140 62.75 75.38 

LM2M1 -2.1550 0.9283 129 51.53 61.74 

LM2M2 -2.2713 0.9319 131 50.79 60.85 

TTYPT -2.2806 0.9323 131 50.76 60.81 

Table4. Binding energy, coefficient of clasterization, scattering length, mean radius and square of mean raduius 

for 𝐻𝑒3
∗ in boundary condition model 

Potential 𝐸𝐻𝑒3
∗ , 𝑚𝐾  ‖𝑓𝑐

∗‖2 𝐿𝑠𝑙 , Å < 𝑟𝐻𝑒3
∗ >, Å < 𝑟3𝐻𝑒3

∗ >
1

2⁄ , Å 

HFDHE2 -1.6765 0.9078 135 56.22 67.11 
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HFD-B -2.7458 0.9439 135 48.31 58.00 

HFD-ID -1.1061 0.8597 136 62.87 76.13 

LM2M1 -2.2585 0.9323 132 52.41 62.04 

LM2M2 -2.2801 0.9319 131 50.79 61.05 

TTYPT -2.2885 0.9339 131 51.23 60.89 

The results of calculation of the scattering states in systems He3
 and 𝐻𝑒3

∗  with and without taking into 

account the hard core are given in d Fig.4 (dependence of fase shifts on energy). 

For interpreting the geometrical characteristic of the He3
 molecule in both graund and exiting ststes was 

given in [31].Using the method devtloped in these paper, let us consider the geometric characteristics 

of 𝑁𝑒3
 and 𝑁𝑒3

∗molecules which are considerable interest in context of investigations into Bose 

condensation, supercondactivity and superfluidity. The results of calculation of the density function 

difined as [31] 

𝜚(𝑟1) = ∫|𝐹(𝑟1, 𝑟2, 𝑟3)|2𝑑𝑟2  𝑑𝑟3, 

Where 

𝐹(𝑟1, 𝑟2, 𝑟3) = Ψ(𝑥, 𝑦, 𝑧′) +
𝑥𝑦[

Ψ(𝑥+, 𝑦+, 𝑧′+)
𝑥+𝑦+ +

Ψ(𝑥−, 𝑦−, 𝑧′−)
𝑥−𝑦− ]

2𝜋𝑥𝑦,
⁄

 

𝑧′ =
(𝑥, 𝑦)

𝑥𝑦,⁄  

𝑥+− = (𝑥2

4⁄ +
3𝑦2

4
⁄ − + √3𝑥𝑦𝑧′

2
⁄ )

1
2⁄ , 𝑦+− = (3𝑥2

4⁄ +
𝑦2

4
⁄ − + √3𝑥𝑦𝑧′

2
⁄ )

1
2⁄  

are presented in Fig.2,3. This function has the form 

𝜚(𝑟) =
√3

4𝜋2𝑟2
∫|𝐹(𝑥, 𝑟√3, 𝑧′)|

2
𝑑𝑥  𝑑𝑧′ 

A sufficiently clear representation of the geometrical characteristics of theinert gases is provided be 

plotting thes function in coordinates 𝑟𝑖 , Ƭ𝑎,where 𝑟Ɩ = 𝑟𝑧
0. 𝑟𝑎 =

𝑧0

|𝑧0|
𝑟(1 − 𝑧02)

1
2⁄ . 

 

Figure2. The density functions for 𝑁𝑒3
∗molecule in ground states 

 

Figure3. The density functions for 𝑁𝑒3
∗molecule in exited states 
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Figure4. Dependence of fase shifts on energy for the collisions between helium atom and molecule for potentials 

HFD − B, LM2M2, TTY P[32] calculated (a) without and (b) with taking into account the hard core 

Note that here, for excited state of the inert gas molecules as well for the molecules𝐻𝑒3
∗ , [31] and 

𝑁𝑒3
∗(Fig.2,3), this function has two peaks, which corresponds to a linear structure of the 𝐻𝑒3

∗system. 

This corresponds to the situation when the third particle in the excited state is located with a high 

probability between two other particles (as if this state corresponded to two combined paired 

subsystems). It is precisely this configuration that corresponds to the conditions for the emergence of 

the Efimov effect in a three-particle system, when the scattering length in one of the paired subsystems 

is quite large. This conclusion is confirmed by calculations of the clusterization coefficient defined by 

the formula [31] 

𝑓𝑐 = ∫ Ψ (𝑥, 𝑦, 𝑧′)𝜙2(𝑥)𝑑𝑧′𝑑𝑥 

The results of such calculations are given in Table 1. It can be seen that two-particle states dominate in 

the excited state 𝑁𝑒3
∗ , while their role in the ground state is insignificant. In the ground state, system 

He3
 forms a nearly equilateral triangle, while in the excited state, one of the atoms is at a large distance 

from the other two atoms. Other excited states can be obtained by the similitude method 1,13, 15]. 

An analogous structure is formed in the calculation of the ground states of the systems𝑁𝑒3
, 𝐴𝑟3

,𝐾𝑟3
, 𝑋𝑒3

, 

and 𝑅𝑒3
 using the three-particle approximation. The results of calculation of these systems in the given 

approximation with the HFD-B potential and the parameters borrowed from [32] are presented in Tables 

5-6. 

Table5. Binding energies of inert gas molecules calculated by using HFD-B potential, a.u. 10−6 

Energy Ne2 Ar2 Kr2 Xe2 Rn2 

𝐸𝑡ℎ𝑟 178 394 619 854 9268 

𝐸𝑒𝑥𝑝 135 446 629 874 - 

Table6. Binding energies of the ground state and the first excited state of the inert gas molecules calculated by 

using HFD-B potential 

𝑁𝑒3
 𝑁𝑒3

∗  𝐴𝑟3
 𝐴𝑒3

∗ 𝐾𝑟3
 𝐾𝑟3

∗ 𝑋𝑒3
 𝑋𝑒3

∗ 𝑅𝑛3
 𝑅𝑛3

∗  

398  330 1278 1215 1885 1811 2509 2438 30875 30801 

In calculations based on the boundary-condition model, the value of core c was chosen so that even as 

light change in this quantity did not affect the binding energy of paired subsystems. In our calculations, 

c = 1.5Ao, the value of binding energy for the helium molecule was 1.69 mK, and the value of 𝑟0was 

100 𝐴0. A detailed description of the numerical method for solving system of equations (9) with 

asymptotic boundary conditions (11), and (12) is given in [13-15]. 

It should be noted that, according to our calculations, the size of the ground state of the He3
 system is 

smaller than the size of the He2 molecule. However, the size of the excited state 𝐻𝑒3
∗  of the three particle 
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system is much larger than that of the two-particle system𝐻𝑒2
. The experimental data [28] confirm this 

statement. Thus, in the given approximation, the results of calculations indicate that peculiar resonant 

states can exist in the He3
 system, the number of such states being not more than two. 

To study the scattering processes occurring during the collision of an atom with a helium molecule and 

to determine the role of pair interaction potentials, we calculated the amplitudes of elastic scattering 

and decay as well as phase shifts with and without taking into account the hard core. 

The results are almost independent of the form of pair interaction potentials and on whether or not the 

hard core was taken into account both for bound states and for scattering state. Thus, it can be concluded 

that the form of pair interaction potentials and allowance for a hard core in the boundary-condition 

model in the given approximation does not substantially affect the results of calculations. 
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