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Abstract: The propagated properties of soliton transported bio-energy excited in the α-helix protein 

molecules with three channels in the cases of short-time and the long-time motion and its features of collision 

at temperature T=0 and biological temperature T=300K are studied numerically by the dynamic equations in 

the improved Davydov theory and fourth-order Runge-Kutta method, respectively. From these simulation 

experiments we see that the new solitons in the improved model can move without dispersion at a constant 

speed retaining its shape and energy in the cases of motion of both short-time or T=0 and long time or 

T=300K and can go through each other without scattering in their collisions. In these cases its lifetime is, at 

least, 120PS at 300K, in which the soliton can travel over about 700 amino acid residues. These results 

obtained are consistent with analytic result obtained by quantum perturbed theory in this model. In the 

meanwhile, the influences of structure disorder of α-helix protein molecules, including the inhomogeneous 

distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole interaction, 

exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied by the fourth-order 

Runge-Kutta method. Therefore, the soliton still is very robust against the structure disorders and thermal 

perturbation of proteins at biological temperature 300K. Then we can conclude that the new soliton in in the 

α-helix protein molecules with three channels is a possible carrier of bio-energy transport and the improved 

model is possibly a candidate for the mechanism. 
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1. INTRODUCTION 

A lot of biological processes in the living systems are associated with bio-energy transport through 
protein molecules, where energy is released by hydrolysis of adenosin triphosphate (ATP) molecules. 
This is a very important problem in biology. However, understanding the mechanism of the 
bio-energy transport in macrobiomolecular systems is a long-standing problem that remains of great 
interest up to now. One can assume that the energy is stored as vibrational energy in the C=O 
stretching mode (amide=I) of a polypeptide chains in protein molecules. Following Davydov’s 
idea[1], one can take into account the coupling between the amide-I vibrational quantum (exciton) 
and the acoustic phonon (molecular displacements) in the protein molecules. Through the coupling, 
non linear interaction appears in the motion of the vibrational quanta, which could lead to a 
self-trapped state of the vibrational quantum and a soliton to occur[1],which can move over 
macroscopic distances along the molecular chains retaining the wave shape and energy and 
momentum and other properties of quasiparticle. Therefore the bio-energy is transported as a 
localized” wave packet” or soliton along protein chains. This is just the Davydov model for the 
bio-energy transport which is proposed first by Davydov in  -helix protein molecules with three 
channels as is shown in Fig.1 in the 1970s[1]. 

Davydov’s idea yields a compelling picture for the mechanism of bio-energy transport in the protein 
molecules and consequently has been the subject of a large number of works[2-16]. Problems related 
to the Davydov model, including the foundation and the accuracy of the theory, the quantum and 
classical properties, and the thermal stability and lifetimes of the Davydov soliton, have been 
extensively studied by many scientists[2-16]. However, considerable controversy has been arisen in 
recent years over whether the Davydov soliton is sufficiently stable in the region of biological 
temperature to provide a viable explanation for bio-energy transport. Many numerical simula- 
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tions[7-9] have been based essentially on classical motion and are subject to the criticism that are 
likely to equations of  Fig.1, Molecular structure of  -helix protein. yield unrelieable estimates 
for the stability of the soliton since the dynamics of the soliton is not being determined by the 
Schrödinger equation[6]. For the thermal equili- brium properties of the Davydov soliton there is 
quantum Monte Carlo simulation[12]. In the simulation correlations characteristic of soliton- like 
quasiparticles occur only at low tempera- tures about T<10K for widely accepted parame- ter values. 
This is consistent at a qualitative level with the result of Cottingham et al[13]. The latter is a 
straightforward quantum- mechanical perturbation calculation, in which the lifetime of the Davydov 
soliton obtained is too small (about 10-12-10-13Sec.) to be useful in the biological processes. This 
shows clearly that the Davydov soliton is not a true wave function of the systems. Therefore, it is 
necessary to reform Davydov’s wave function. Scientists thought that the soliton with multiquantum 
state (n>2), for example, Brown et. al’s coherent state[5], and Kerr et. al’s[11] and Schweitzer et. al’s[13] 
multiquantum state, and Cruzeiro–Hansson’s[9] and Förner’s[10] two quantum state, and so on, would 
be thermally stable in the region of biological temperature, and could provide a realistic mechanism 
for the bio-energy transport in the protein molecules. However, the assumption of the standard 
coherent state is unsuitable or impossible for the protein molecules because the numbers of particle 
in this state are unnumerable and one could not retain conservation of the number of particles of the 
system. The assumption of a multiquantum state(n>2) along with a coherent state also consist not 
with the fact that the energy released in ATP hydrolysis (about 0.43eV) can excite only two quanta 
of amide-I vibration. On the other hand, Cruzeiro-Hansson[9] had thought that Förner’s two-quantum 
state in the semiclassical case was not exact. We proved[17] the Cruzeiro-Hansson’s ansatz contains 
four excitons (quanta), instead of two excitons. Obviously, it is not possible at all to create the four 
excitons by the energy released in the ATP hydrolysis. 

 

Fig1. Molecular Structure of  -Helix Protein 

Based on the work of Cruzeiro-Hansson and Förner, and so on, we improve and develop the 

Davydov model by changing simultaneously the Hamiltonian and the wave function of the systems. 

We add new coupling interaction between the acoustic phonon and amide-I vibrational modes into 

original Davydov’s Hamiltonian, and replace the one-quantum (exciton) state in the Davydov’s 

wave function by a quasi-coherent two-quantum state. Thus, the equation of motion and the 

properties of the soliton excited in the improved model are completely different from that in the 

Davydov model. I suppose that this model could resolve the controversy on the thermal stability and 

lifetime of the soliton excited in protein molecules. In our theory the wave function and Hamiltonian 

of the protein molecules with one-channel was represented by[17] 
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where 


n
B  and Bn are Boson creation and annihilation operators for the exciton, IO>ex and IO>ph 

are the ground states of the exciton and phonon, respectively. un and Pn are the displacement and 
momentum operators of amino acid residue in site n, respectively. the an(t),βn(t)=< Ф(t) |un|Ф(t)>and 
πn(t)=< Ф(t)|Pn|Ф(t)> are three setes of unknown functions, λ is a normalization constant. Where ε0= 
 ω0=1665cm-1=0.2035eV is excitation energy of an isolated amide-I oscillator or energy of the 
exciton (the C=0 stretching mode). Present non-linear coupling constants are 

1
  and 

2
 , they 

represent the modulations of the one-site energy and resonant (or dipole-dipole) interaction energy 
for the excitons caused by the displacement of amino acid residue, respectively. M is the mass of an 
amino acid residue, and W is the elasticity constant of the protein, J is the dipole-dipole interaction 
energy between neighbouring amino acids, 10>ph and 10>ex are vacuum states of phonon and exciton, 
respectively. Hex here describe Boson-type Frenkel excitons excited by the energy released in ATP 
hydrolysis in the protein molecules, Hph describes a harmonic feature of amino acid residues, Hint 
represents the interaction between the two modes of motion. Usually for all parameters in Eqs. 
(1)-(2) site-independent mean values are used. The average value of the dipole-dipole coupling 
between neighboring amide-I oscillators is J =0.967 meV. The average spring constant of the 
hydrogen bonds is taken usually to be W =13 N/m. The average mass M is taken as that of 
myosine ( M =114mp, mp is a proton mass). For 

1
  the experimental value is 62 pN, 

2
 =10-15 

pN.  

The Hamiltonian and wave function shown in Eqs. (1)- (2) are different from the Davydov’s 
Haniltonian and wave function. We add a new interaction term, ))((

1112 
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n

BBBBuu , 
into the originally Davydov’s Hamiltonian. Thus the Hamiltonian now has better symmetry and can 
also represent the features of mutual correlations of the collective excitations and motions of 
quasi-particles in the protein molecules. The present wave function of the exciton in Eq. (1) is not an 
excitation state of single-particle, but a coherent state, accurately speaking, a quasi-coherent state. It 
retains only three terms of the expansion of a standard coherent state, which mathematically is 
justified in the case of small an(t) (i. e., |an(t)|<<1), it can be viewed as an effective truncation of a 
standard coherent state. Therefore we call |a (t)> a quasi-coherent state. However, it is not an 
eigenstate of the number operator, 

nnn
BBN


ˆ , it is a coherent superposition of the excitonic 

state with two quunta and the ground state of exciton. However, in this state the number of quantum 
is determinate, instead of unnumerable. To find out how many excitons this state contains, we have 
to compute the expectation value of the number operator N̂  in this state and sum over the sites. 
The average number of excitons for this state is. 2)()()(ˆ)(  



n

nn
taBBtataNtaN . 

Therefore, it contains really two excitons. Thus, we see that the improved model is completely 
different from the Davydov model. Then, the results obtained from this model are fully different 
from that of the Davydov model. The distinctions between the two models are shown in Table 1[17]. 
From this table 1we know that the improved model repulse and refuse the shortcoming of the 
Davydov model[1], the new soliton in the model is thermal stable at biological temperature 300K, has 
so enough long lifetime, thus it can plays important role in biological processes, i. e., the new soliton 
is a very good carrier of bio-energy transport in the protein molecules in the living systems.   

Table1. Comparison of features of the solitons in the improved model and Davydov model  

model The features of the solitons 

 nonlinear 

interaction  

G(10-21J) 

amplitude width 

10-10m 

binding 

energy 

(10-21J) 

lifetime 

at 300K 

  (S) 

thermal 

stability 

at 300K 

critical 

temperature 

 (K) 

number of 

amino acid 

traveled by  

soliton in 

lifetime 

our model 3.8 1.72 4.95 -7.8 10-9-10-10 stable 320 several 

hundreds 

Davydov 

model 

1.18 0.974 14.88 -0.188 10-12-10-13 unstable <200 Less than 10 

However, this analytic results are only related to the periodic protein molecules with one-channel, 
some approximate ways containing long-wave approximation, continuum approximation and long- 
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time approximation, and so on, were used in the calculation. As a matter of fact, any single channel 
of biological protein molecules consists of 20 different amino acid residues with molecular weights 
between 75mp(glycine) and 204mp(tryptophane), which correspond to the variation of mass between 
o.67 M <M <1.8 M , here M  =114mp is an average mass of amino acid residue, mp is proton mass, 
Therefore the protein molecules are not periodic, but or aperiodic or nonuniform of structure. This 
structure aperiodicity results necessarily in the fluctuations of spring constant, dipole-dipole 
interaction, exciton-phonon coupling constant, diagonal disorder and chain-chain interaction in the 
proteins, Thus the states of new solitons will be changed. In such a case, it is very necessary to study 
the properties of the soliton in the bio-energy transport process in aperiodic protein molecules. In 
this paper we will study the influences of structure aperiodicities on the features of soliton excited in 
the -helix protein molecules with three channels as shown in Fig.1 by numerical simulation and 
Runge-Kutta way[18]. We could see that the soliton is still very robust against these structure 
aperiodicites of the protein molecules. In Sec.Ⅱ we introduce the calculated method; the results and 
discussion are described in Sec.Ⅲ. In Sec.Ⅳ we state the conclusions of this paper. 

2. NUMERICAL SIMULATION METHOD 

For the  -helix protein molecules with three channels the Hamiltonian and the wave function in 
Eqs.(1) and (2) are , respectively, replaced by[17] 

2

21

0 1 1 1 12

1 1 1 2 1 1 1 1 1 1

[ ( )] [ ( ) ]
2

[ ( ) ( )( ) ( )]

n

e x p h in x n n n n n n n n

n n

n n n n n n n n n n n n n n

n

P
H H H H B B J B B B B W q q

M

q q B B q q B B B B L B B B B



       

             



 

  

   

    

       

        

      

 



(3) 

ph

n

nnnnex

n

nn

n

nn
utPtq

i
BtaBta

ttt








0|}])()([exp{0|]))((
!2

1
)(1[

1

)(|)(|)(|

2


















   (4) 

where subscript  =1,2,3 denote the number of three channels, L is the coefficient of chain-chain 
interaction among the three channels in the protein molecules. From time-dependent SchrÖdinger 
equation  
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and considering further the neighboring interactions among the three channels we can find out  
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We can eliminate the term containingε0 in Eq.(8) by the following transformation: 
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where 
n

a r


and 
n

a i


are real and imaginary part of 
n

a


(t). Eqs.(12)-(15) are equations we use in 
simulation calculations. The dynamic properties of a peptide group or amino acid molecules is 
described by the above four-equations[18]. Thus the protein molecules consisted of N amino acid 
molecules should associatively solve 4N equations .From these equations we can find out their 
solutions, 

n
a r


and 

n
a i


, by numerical simulation of fourth-order Runge-Kutta method and by 

using the following initial condition at a point
0

n

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for the  -helix protein molecules with three channels, where =1,2,3, A is normalization factor. 
Thus we can determine the solutions of Eqs.(8)-(9). However, in the simulation calculation the 
following boundary conditions must be satisfied: (1) the energy of the soliton must retain constant 
up to 0.0012, i.e., the energy must be conservative at any position and time; (2) in motion of 
soliton, the probability of the soliton must be in normalized at any time, or speaking ,numbers of 
particle for the system must be conservative; (3) the energy of the soliton is real, its imaginary part 
must be approach to zero up to an accuracy of 0.001fev. In accordance with The three criterions and 
utilizing above equations and above initial conditions we can calculate the evolution of time and 
space for the probability by MATLAB language and data-parallel programming, where the time step 
size is chosen as 0.01ps. In this calculation the values of the physical parameters we used are as 
follow. The mass M  =5.73×10-25kg= 114×3 amu (atomic mass units) , 114amu is a mass of 
myosine, W =39N/m, 

0
 =0.2035eV, J =9.68×10-4eV, 

1
 = 6.2×10-11N, 

2
 =(10-18)×10-12N and 

L =1.5meV for the  -helix protein molecules with three channels [1-17]. Applying the above 
descrete equations and data we can calculate numerically their solutions related the time, where 
|

n
a


(t)|2 is probability of the soliton occurred at nth amino acid molecule. Thus we can plot the state 

of the soliton in three dimensional time-place in the case of structure disorder for the protein 
molecules as follows. 

3. RESULTS OF NUMERICAL SIMULATION AND DISCUSSION 

3.1. The Motion of Solitons in the Protein Molecules 

When the above initial condition is imported from the end of the molecular chain, the numerical 
solution of Eqs.(12)-(15) obtained by using the fourth order Runge-Kutta method[18] and the above 
average values of parameters for the  -helix protein molecules with three channels in the 
improved model is shown in Fig.2. In Fig.2a we show the behaviors of motion of the solution, when 
the initial condition of

2

0 1 2
( 0 ) s e c [( ) ( ) / 4 ]

n
a t A h n n J W

 
     ,where  =1,2,3, are 

simultaneously motivated on the first ends of the three channels. From this figure we see that this 
solution can retain the clock shape to move over a long distances in the range of spacings of 400 
amino acid residues and the time of 40ps without dispersion along the molecular chains, i.e., this 
solution is a soliton. Therefore Eqs.(8)-(9) have exactly soliton solution with a clock shape. This is 
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same with the analytic results obtained for the protein with single channel in continuum 
approximation in this model in which the dynamical equation is a standard nonlinear Schrodinger 
equation[17]. In Fig.2b and 2c we plot also the feature of motion of the solutions, where the initial 
conditions of 

n
a


(t=0) =0, where  =1,2, 

2

3 0 3 1 2
( 0 ) s e c [( ) ( ) / 4 ]

n
a t A h n n J W     , 

and
2

0 1 2
( 0 ) s e c [( ) ( ) / 4 ]

n
a t A h n n J W

 
      where =1,2, an3(t=0)=0 are used, respectively. 

These initial conditions denote that the first ends of one channel and two channels are motivated, but 
other two channels and one channel are not linked, respectively. We see from Fig.2b that the new 
two waves with small amplitudes are generated, except for one soliton occurred on the channel 
linked by above initial condition. Obviously, the new two waves are still excited by the above initial 
condition through the interactions among the three channels. Although the two excitations are small, 
they can move over long distances along the two chains keeping their amplitudes. Therefore, they 
are still some solitons with a small amplitude and clock shape. However, we see a strange 
phenomenon from Fig.2c that the amplitudes of solitons generated in the two motivated chains are 
small, in an unmotivated chain the soliton formed from the superposition of waves induced by other 
two chains is greater. From this study we know that the solitons formed have same and higher 
energy, when the initial conditions are simultaneously motivated on the first ends of the three 
channels, which corresponds to practical case, but the soliton feature of solutions is substandard in 
other two cases which occur not in practical case.   

 

                  (a)                          (b)   

 

(c) 

Fig2. Features of soliton solution of Eqs.(10)-(13) for  -helix protein with three channels 

In order to confirm farther the soliton feature of the solutions of Eqs.(8)- (9), we study farther the 
collision property of the solitons with a clock shape, set up from opposite ends of the channels for 
the  -helix protein molecules with three channels, the result is shown in Fig3a, when the above 
initial conditions motivate simultaneously the opposite ends of the three channels as mentioned 
above. From this figure we see clearly that initial two solitons with clock shapes separating 100 
amino acid spacings in each channel collide with each other at about 17ps. After this collision, two 
solitons in each channel go through each other without scattering and retain still their shapes of 
clock to propagate toward and separately along the three chains, which satisfy the rule of collision of 
macroscopic particles. Thus we can also judge from this result that the solution of Eqs.(8)-(9) in 
the -helix protein is an exact soliton. In Fig.3b and 3c we plot also the feature of collision of the 
two solitons generated from opposite ends of the channels, when the above initial conditions 
motivate the opposite ends of one channel and two channels, but are not linked with the opposite 
ends of other two channels and one channel, respectively. In the two cases the soliton feature of 
solutions after the collision is substandard, especially for the initial condition to motivate only the 
opposite ends of single channel shown in Fig.3b. Thus the solutions of Eqs.(8)-(9) have better 
soliton feature, when the opposite ends of the three channels are motivated simultaneously by the 
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above initial conditions in the  -helix protein molecules. Hence we conclude from Figs.2-3 that 
the soliton excited in the  -helix protein molecules has higher stability in the case of simultaneous 
motivation of initial condition to the three channels, then we only work in the case in following 
study. 

                                      

(a)                                      (b) 

  

(c) 

Fig3. The collision features of the solitons in different conditions 

In the above simulation we study only the behavior of the soliton in the cases of short time of 40ps 
which exhibits clearly transport feature of this soliton. However, what does its behavior be in the 
cases of the longer-time and larger spacings? Thus we study further the behaviors of long-time for 
the solution of Eqs.(12)-(15) in the  -helix proteins with three channels. In Fig.4 we show the 
result of soliton solutions of Eqs.(12)-(15) obtained at 120ps times and 300 amino acid spacings, 
when above initial conditions are simultaneously linked on the first ends of the three channels. We 
can see clearly from Fig.4 that the soliton retain still its amplitude and shape of clock to move in 
such a case. This result shows that the lifetime of the soliton is, at least, 120Ps. What means the 
lifetime of 120Ps? We know that the characteristic unit of time for the model is 

sWMvr
1321

000
1098.0)/(/


 , which is the time to move over one lattice space moving 

at the sound speed, vo, in the molecular chain. Since one assumes that 
0

vv  , the soliton will not 
travel the length of the chain unless 

0
/   is large compared with 

0
/ rL  where L is the typical 

length of the protein chain and   is lifetime of the soliton. Hence for 500/,100/
00
 rL  is 

a reasonable criterion for the soliton to be a possible mechanism for energy transfer in the proteins. 
Therefore the lifetime of the soliton, ps120 , corresponds to 700/

0
 >500. This means 

that the soliton in the improved model is a possible carrier of bio-energy transport in the proteins. 
This conclusion agree also with analytic results in table 1 [16]. This shows that the our analytic results 
and the improved model are correct[17]. 

 

Fig4. The behaviour of long-time motion for the solitons 
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However, the 20 different amino acid residues with molecular weights between 75mp (glycine) and 
204mp(tryptophane), which correspond to the variation of mass between o.67 M <M <1.8 M , are 
nonuniformly distributed in the protein molecules. This will result in changes or fluctuations of 
spring constant, dipole-dipole interaction, exciton-phonon coupling constant and diagonal disorder 
for the proteins, Thus the states of new solitons will change in such a case. Then in the nonuniform 
protein molecules we should introduce the random number generators, 

k
 and |βn|, to designate the 

random features of the mass sequences and ground state energy, at the same time, represent the 
fluctuations of spring constant, dipole-dipole interaction, exciton-phonon coupling constant and 
diagonal disorder by W W W   , J J J   ,  

1 2 1 2 1 2
( ) ( ) ( )           , 

0 0 n
         in the non uniform proteins[10,17], respectively. When the disorder of mass 

sequence is in the region of MMM
k

267.0  ,or 0.67 < 
k

 <2, where Mk= 


M
k

 , and 
fluctuations of  )(

21
  , J, W and ground state energy 

0
  are about 

1 2 1 2
( ) 4% ( )        , 2 %J J   , 8 %W W   , 

n
 

0
,ε=0.11meV, |βn| ≤1, 

respectively, the states of the new soliton obtained by the above equations and fourth-order 
Runge-Kutta method[18] at T=300K are shown in Fig.5.  From  

 

Fig5. The state of soliton under influences of structure disorders of 0 .6 7 2
k

M M M  , 

1 2 1 2
( ) 4% ( )        , 2 %J J   , 8 %W W   , 

n
 

0
,ε=0.11meV,|βn| ≤1, 

these figures we see clearly that the new soliton is still stable at 300K, when the structure 
nonuniformity occurs in the proteins. Therefore we can conclude that the new soliton is robust 
against the thermal perturbation and structure nonuniformity of protein molecules. Thus the new 
soliton in the improved model is a real carrier of the bio-energy transport in the protein molecules. 

3.2. The States of Solitons in Proteins in Proteins at Biological Temperature    

However, the  -helix protein molecules in the living systems work always at biological 
temperature of 300K, therefore, we must study the transported  ehavior of the soliton at 300K and 
should add the effect of temperature on the soliton into the above equations. How do we consider 
this effect? As a matter of fact, this effect was studied in many models in the protein 
molecules[1,3-4,9-15]. We here adopt Lomdahl and Kerr’s method[11] in the calculation because the 
Lomdahl and Kerr’s numerical result exhibits just the thermal instability of the Davydov soliton. In 
the Lamdahl and Kerr’s method[11]  the decay term 

n
qM

.

 and random noise term, Fn(t), resulting 
from the temperature, were added in displacement equation of the amino acid molecules Eq.(9).  
Thus The latter can now be represented by  
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where  is dissipation coefficient of vibration of amino acids. The correlation function of the 
random noise force is determined by  
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Here r0 is a lattice constant .Assuming again that random noise force obeys the normal distribution 
with criterion deviation  and zero expected value. Thus this distribution can be represented by  
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Where τ is a time constant, the quantity Γ is an inverse number of the time constant of the heat bath. 

Vice Versa. In practical calculation, the random noise force Fn(t) is computed by the random number, 

which can be presented by 




L

r

nrn
tXtF

1

]
2

1
)([)(  . We have assumed L=12, the random number 

Xnr(t) is in the region of (0Xnr  1) at each time step. Therefore the error where deviation 

difference of [Xn(t)-1/2]is about 1/12, then criterion deviation of  Fn(t)  is  , its expected value 

is zero. Then, the size of random noise force is in the range of  |Fn(t)|≤6  . Hence, Fn(t) is 

Gaussian distribution at L→∞. Thus we now can find out the soliton solution of the equations of 

motion, Eqs.(8) and (16) with decay effect and random noise force by the above method and 

fourth-order Runge-Kutta method[18]. This result at 300K are shown in Fig.6 for the  -helix protein 

molecules with three channels, when above initial conditions are simultaneously linked on the first 

ends of the three channels. From this figure we see that the new soliton in the improved model can 

move along the three channels at the constant speed and amplitude without dispersion in such a case. 

So, the soliton is still thermally stable at the biological temperature 300K. In Fig.7 we report also the 

result of motion of the soliton in the case of long time of 120Ps and large spacings of 1000 sites at 

300K for the  -helix protein molecules, when above initial conditions are simultaneously linked 

on the first ends of the three channels. We see from this figure that the solitons are undisturbed in 

such a case, and move really over a long time and large spacing along the protein molecular chains 

to retain its amplitude and velocity at the bio-temperatures. In Fig.8 we plot the collision behaviors 

of the solitons with clock shape, set up from opposite ends of the channels in the  -helix protein 

molecules, when above initial conditions are simultaneously linked on the opposite ends of the three 

channels. From this figure we see clearly that initial two solitons with clock shapes separating 100 

amino acid spacings in each channel collide with each other at about 16ps. After the collision, two 

solitons in each channel go through each other to retain still their shapes of clock and to propagate 

toward and separately along the three chains. These results show clearly that although there is the 

large lattice fluctuations in the protein molecules due to the influence of temperature, the nonlinear 

coupling interaction between the amino acids and excitons is still able to stabilize the soliton, 

therefore this soliton is very robust against the thermal perturbation of environment. In this case the 

lifetime of the new soliton is also, at least, 120Ps. This means that the new soliton could play an 

important role in the biological processes.  

 

Fig6. The behaviors of the new soliton at biological temperature 300K   

 

Fig7. The state of the soliton in long-time motion at 300K 
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Fig8. The properties of collision for the solitons at 300K 

4. CONCLUSION 

In one word, we study numerically the properties of soliton solutions of equations of motion in the 
cases of short-time and long-time motion and its features of collision in the  -helix protein 
molecules with three channels at the biological temperature 300K in the improved model by the 
fourth-order Runge-Kutta method. We see clearly from these results that this soliton in the improved 
model is very stable whether in the cases of long- and short-time motions and mutual collision at 
300K, it can move along the protein molecular chains without dispersion at a constant speed 
retaining its shape and energy in the cases of motion of both short-time and T=0 and long time and 
T=300K and can go through each other without scattering in the collision. In these case its lifetime 
is, at least, 120PS at 300K, in which the soliton can travel over about 700 amino acid residues. This 
result is consistent with analytic result obtained by quantum perturbed theory in this model. In the 
meanwhile, the influences of structure disorder of protein molecules, including the inhomogeneous 
distribution of amino acids with different masses and fluctuations of spring constant, dipole-dipole 
interaction, exciton-phonon coupling constant and diagonal disorder, on the solitons are also studied. 
The results show that the soliton is easily undisturbed and very robust against the structure disorders 
and thermal perturbation . Therefore the new soliton in the improved model is a possible carrier of 
bio-energy transport and the model is possibly a candidate for the mechanism of this transport. 
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