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1. INTRODUCTION 

Reacting flows with active chemistry and control theory are distinct disciplines. They have 
mathematical similarities, and some of the similarities can be exploited. 

2. REACTING FLOW PROBLEMS 

Consider a generic initial value problem: 

( ),
dy

g y
dt

                                                                                                                            (1a) 

0(0) ,y y                                                                                                                                  (1b) 

where y and g are N -dimensional column vectors. For reacting flow problems, g(y) is usually 

the sum of contributions from many elementary chemical reactions—some very fast, and others 

not so fast. For the present purpose, g(y) is just any given differentiable function of y and may 

be arbitrarily non-linear. The relevant Jacobian 
*

( )U x u  is denoted by J—note that J is y-

dependent when g(y) is non-linear. 

Now consider the case when the eigenvalues of J have a wide gap, and that there are M 

“fast” modes (M < N) which are all known to be decaying modes. After the M fast modes 

decay away, the solution will then evolve in a slow manifold defined by: 

( ) 0,1mf y m M                                                                                                                                (2) 

for t >> 
M

T  where 
M

T  is the time scale (reciprocal of the magnitude of the real part of the 

eigenvalue) of the slowest fast mode. When solutions in the slow evolution period are of interest, 

finding the slow manifold—Eq.(2)—is a worthy objective, because knowledge of the slow manifold 

can be exploited to provide various insights and useful simplifications. 

3. CSP ON REACTING FLOW PROBLEMS 

Let an and bn, n = 1, . . . , N be a full set of orthonormal (column and row) basis vectors spanning 

the full N -dimensional space. The right hand side of Eq.(1a) can always be expressed in terms of 

any full set of basis vectors: 

1

( )
N

n

n

N

g y a f


                                                                                                                            (3a) 

Where 

Abstract: Model reduction of reacting flows looks for “slow manifolds”—by exploiting the fast/slow speed 

gap of the reaction system—so that some of the original ODEs can be replaced by algebraic equations. 

Control theory strives to determine some unknown control forces in a set of given ODEs in order to honor 

some user-specified behaviors— such as restricting the solutions to stay on some user-specified phase space 

surface (i.e. manifold).  It is shown that some model reduction methodologies in reacting flows can be applied 

to control theory. 
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( ) ,n nf y b g  1,..., ,n N                                                                     (3b)

And is the N -dimensional inner product. For linear problems, the right and left eigenvectors of J 

are excellent choices for a
n
 and b

n
. If the eigenmodes are ordered with the fastest modes first, then 

after the first M fast modes have sufficiently decayed, the solution will subsequently evolve in the 

slow manifold, Eq.(2). For non-linear problems, CSP provides a two-step refinement algorithm to 

improve the fast/slow decoupling of any trial basis vectors set [1, 2]. Each CSP refinement cycle 

improves the quality of the fast/slow decoupling—i.e.  the smallness of the M f
m
(y)’s—by  a factor 

proportional to the eigenvalue gap between the fast and slow eigenmodes. 

4. CONTROL PROBLEMS 

Consider the following dynamics system: 

( ) ,
dx

A x Bu
dt

                                                                                                                       (4) 

where x and A are N -dimensional column vectors, A(x)  is some given differentiable function of x 

and may be arbitrarily non-linear, u is a M -dimensional column vector ( )M N representing the 

to-be-determined “control forces,” and B is a N M known constant matrix.  A typical 

control objective would be to find u(t) (or u(x)) such that the solution x(t)—after a brief 

transient—would evolve with acceptably small user-specified “tracking errors” i.e., the 

controlled x(t) trajectories would stay inside a manifold defined by: 

( ) 0,mF X   1 ,m M                                                                                                                       (5)   

Where the F m(x)’s are M user-specified algebraic tracking errors from some desired trajectories.  

See Eq.(11) later for more general control objectives. 

A control force program u(t) is called open-loop control while a control law
*

( )u X is called close-

loop control, where
*

X denotes sensor measurement of the actual true x to provide “feedback” to the 

controller.  Asterisks shall be used to identify sensor measurements provided to the controller.  It is 

assumed that good sensor measurements for all components of x are available. 

5. RESTATING CONTROL PROBLEMS AS REACTING FLOW PROBLEMS 

For the sake of simplicity (and to sidestep many complications), this exposition shall be limited to 

the special case of M = 1. So F 1(x) is the sole user-specified algebraic function, and u is a 

scalar to be denoted by u. For this special case, the control problem can be restated in the form 

of reacting flow problems (with N + 1 species): 

,
x

y
u

 
  
 

 

*
( , )

( ) ( ) ,
U u

g y A x Bu
x

 
  
 

1 1

* *( ) ( ).f y F X                                                                                   (6) 

Thus the species u has the new “kinetics” equation: 

 
*( , ).

du
U X u

dt
                                                                                                                                                  (7) 

The problem now is to find *( , )U X u such that the tracking errors (as reported by the sensors)—

starting with f 1(y *)  = F 1 (x *) ≠ 0 initially—would decay toward 1 1
* *( ) ( ) 0f y F X  in some 

desirable manner after a brief transiet. 

6. FAST REACTION AS UNIVERSAL DYNAMIC CONTROL LAW 

To achieve the control objective 1
*( ) 0F X  for t T , the following *( )U x u is recommended [3,4] 

for Eq.(7): 

1 1

* *
*

( ) ( )1
( , )

dF x F x
U x u

K t dt T

 
   


                                                                                            (8a) 
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Where 

1

*( )
F

K K x B
x


 


                                                                                                                                  (8b) 

and K (x⇤)=0 is assumed. Here, Tis an user-specified time constant of the “brief transient,” and Δt is 

another user-specified positive time constant which must be smaller than T . Both are at the disposal 

of the user. While U (x⇤, u) in Eq.(7) can be interpreted  as the chemical kinetics  term  for the 

chemical species u,  it  is actually a close loop dynamic control  law for the control force u. From the 
reacting flows point of view, the QSSA (quasi- steady-state approximation) is applicable to the 

species u only if (i) Eq.(7) is stable  and (ii) U (x⇤, u)’s “reaction  rate” is “asymptotically large.” 

Application of QSSA on Eq.(7) would yield an exponentially decaying F 1 (x) toward  zero (for t >> 
t)—with (user-specified) time constant T   

The crucial question is then:  how to ensure that QSSA is applicable to u (i.e. to Eq.(7) with Eq.(8a))  

in the small Δt limit? 

How does U (x*,u) depend on u? Neither 1
*( ) /F X T nor K depends on but (dF 1(x)/dt)* does. Using 

straight forward mathematics, one obtains:  

                                                                                       (9) 

where O(δ) represents the measurement errors  of dx⇤/dt and  they are assumed small (with  zero 

mean). Thus,  Eq.(8a)  and Eq.(9)  say that U (x⇤, u) contains—through dx⇤/dt provided  by 

sensor measurements—a first order chemical reaction  for species u, and  its  forward  reaction  rate 

(which  is at the disposal of the user)  is inversely proportional  to Δt.  It is now totally straight 

forward to show that QSSA is indeed a valid approximation for u in the small Δt limit.  Thus Δt 

should be as small as possible. 

To achieve control objective Eq.(5) with  M =1for dynamic system Eq.(4), the recommended close 
loop dynamic control law is: 

11
* *

*

( )1 dx F xdu F

dt K t X dt T

 
  

  
                                                                                              (10) 

It is assumed that good quality sensor measurements of both x⇤(t) and dx⇤/dt are available  to the 

controller to evaluate the right hand  side. The initial condition for u(0) is quite irrelevant—any 
convenient value will do. 

In  actual implementation, the real  world integrates Eq.(4)—using  real world physics—while the 
“controller” (which is a microprocessor-based black box) integrates Eq.(10) numerically in real 

time—assuming that good quality real time sensor measurements of both x⇤  and dx⇤/dt are 

available.  Note that the precise numerical values of (small but finite) Δt used is irrelevant to the 
1

*( ) 0F X  control objective (for t T ). The smallness of Δt is limited by practical hardware 

considerations of the finite turn-around time of sensor measurements and the software computational 

time inside the black box. 

7. CAN YOU CONTROL X IF YOU DON’T KNOW A(X)? 

It is important to note that this dynamics close loop control law Eq.(10) needs no information 

whatever on A(x), the open-loop dynamics of the original system—provided real time sensor 

measurements of both x* and (dx/dt)
* 
are available. It does need some information on the column 

vector B—its role here is merely to determine the sign of K. It is very easy to do computer 

simulations with this dynamics  control law to confirm numerically  that the same control law (for 
one specified control objective) can be used for any reasonable  (unknown) A(x)—its nonlinearity  is 

quite  irrelevant  so long as its  (open  loop) time scale is much  larger  than the very  small Δt.   
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Hence Eq.(10) is a robust universal dynamic control law. 

The exposition above was for the special control objective: 1( ) 0F X  after t T Generalizat- ion 

to the more general control objective: 
1

1( , ; ) 0
dF

H F X t
dt

  , t t                                                                                                     (11) 

is completely straight forward—where H (F 1, x; t) is free to be chosen by the users.  Just 

replace F 1(x*)/T in Eq.(10) by the desired 1
*( , ; ).H F X t  

8. OPTIMAL CONTROL 

It is well known that optimal control theory usually generates two-point boundary value problems 

which are more cumbersome to solve than initial value problems. The methodology discussed here 

can be used to deal with the two-point boundary value issues, and was found successful [4] for a 
particular simple class of optimal control problems. 

9. CONCLUDING REMARKS 

When 1M  , B is a N M matrix, and there are M control objectives in Eq.(5). The important 

matrix for control theory is then the M M matrix K defined by: 

, 1,...,
mF

K B m M
X


 


                                                                                                                  (12) 

When K is non-singular the control problem is said to have unity relative degree [5]—it was so 

assumed in the M =1case presented earlier. For problems with higher relative degrees (including 

the M = 1 case with K = 0), sensor measurements of higher time derivatives of x are needed. 
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