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Abstract: The possible effects of trans-Planckian physics on the scalar field in conformal inflation are 

investigated in the lattice Schrödinger picture. For the massless conformally coupled scalar field during the 

slow-roll inflation, we consider the Corley-Jacobson type dispersion relations with quartic or sextic correction to 

obtain the time evolution of the vacuum state wave functional. We then calculate explicitly the finite vacuum 

energy density due to fluctuations of the inflaton field, and evaluate the corresponding cosmological constant 

through the backreaction constraint on the magnitude of dispersion parameters. We also show how the 

cosmological constant reduces significantly during the slow-roll inflation at the grand unification phase 

transition. Finally, using the current astronomical observations which indicate that radiation and matter 

dominated epoch is sandwiched between two asymptotic de Sitter epochs, and knowing the fact that de Sitter 

geometry is invariant under time translation, we propose the possibility that similar reduction mechanism may 

reappear during the late time acceleration era, and thus yield a tiny current value of the cosmological constant.    
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1. INTRODUCTION 

Usually standard inflation is realized through a slow rolling scalar field (inflaton) minimally coupled to 

gravity [1]. Nevertheless, it is well known that the extension to the non-minimal coupling with the Ricci 

scalar curvature can soften the problem related to the small value of the self-coupling in the quartic 

potential of chaotic inflation [2]. Moreover, non-minimal coupling terms also can lead to corrections on 

power spectrum of primordial perturbations [3], a tiny tensor-to-scalar ratio [4] and non-Gaussianities 

[5]. It was even pointed out that inflation with a conformally coupled inflaton can be realized as the 

rapid roll inflation [6, 7]. Recently, models of chaotic inflation were also proposed in supergravity with 

an arbitrary inflaton potential, where the inflaton field is non-minimally coupled to gravity [8, 9]. 

However, the standard inflationary scenario suffers from several problems. One of these problems is 

the so-called trans-Planckian problem [10, 11] of whether the predictions of standard cosmology are 

insensitive to the effects of trans-Planckian physics. In fact, nonlinear dispersion relations such as the 

Corley-Jacobson (CJ) type were used to mimic the trans-Planckian effects on cosmological 

perturbations [10-12]. These CJ type dispersion relations can be obtained naturally from quantum 

gravity models such as Horava gravity [13, 14]. Moreover, in several approaches to quantum gravity, 

the phenomenon of running spectral dimension of spacetime from the standard value of 4 in the infrared 

to a smaller value in the ultraviolet is associated with modified dispersion relations, which also include 

the CJ type dispersion relations [15, 16]. These recent research results suggest that spacetime becomes 

effectively two-dimensional at super-Planckian energies, and all particles are conformally coupled to 

gravity [17].   

In our previous work [18-22] we used the lattice Schrödinger picture to study the free scalar field 

theory in de Sitter space, derived the wave functionals for the Bunch-Davies (BD) vacuum state and 

its excited states, and found the trans-Planckian effects on the quantum evolution of the vacuum state 

wave functional of massless minimally coupled scalar field for the CJ type dispersion relation with 
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sextic correction. In this paper we try to extend the study to the case of massless conformally coupled 

scalar field for the CJ type dispersion relations with quartic or sextic correction. 

The organization of the paper is as follows. In Section 2, the theory of a generically coupled scalar 

field in de Sitter space is briefly reviewed in the lattice Schrödinger picture. In Section 3, we consider 

the massless conformally coupled scalar field during the slow-roll inflation, and use the CJ type 

dispersion relations with quartic or sextic correction to obtain the time evolution of the vacuum state 

wave functional. In Section 4, using the results of Section 3, we calculate the finite vacuum energy 

density and use the backreaction constraint to address the cosmological constant problem. Finally, 

conclusions are presented in Section 5. Throughout this paper we will set  =c=1. 

2. DE SITTER SCALAR FIELD THEORY IN SCHRÖDINGER PICTURE 

In this section, we review briefly the theory of a generically coupled scalar field in de Sitter space in the 

lattice Schrödinger picture (for the details see [18, 19]). We consider the following Lagrangian density 

for the scalar field  
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where   is a real scalar field, )(V is the potential , m is the mass of the scalar quanta, R  is the Ricci 
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In the (1+d)-dimensional de Sitter space we have )exp()( htta  , where aah /  is the Hubble 

parameter which is a constant.   

For d=1, in the lattice Schrödinger picture, from (2) we can obtain the time-dependent functional 

Schrödinger equation in momentum space  
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Here    Nll /sin/2    with NW / , i.e., W  is the overall comoving spatial size of lattice. 

Moreover, lll i 21   , lll ippp 21  , and lp  is the conjugate momentum for l  (the 

subscripts 1 and 2 denote the real and imaginary parts respectively). 
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Here (8) arises from the field quantization of the Hamiltonian (5) through the functional Schrödinger 

representation rlrl   , rlrl ip  / , where operators rl  and rlp  satisfy the equal time 

commutation relations [ rl , rlp ] i . Therefore (8) governs the time evolution of the state wave 

functional rl of the Hamiltonian operator rlH  in the { rl } representation. In terms of the 

conformal time   defined by 

adtd / ,    111 exp   ahhth ,  ＜ ＜0,                               (9) 

the wave functionals of normalized ground and excited states are found to be   
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iR  ,  rln 0,1,2,…                            (10)  
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Here rl  is defined by   rlrl Hh  

)1(
//2 , )()( rlnrl

H   is the nth-order Hermite polynomial, 

and )(
)1(

 lH  is the Hankel function of the first kind of order   with   222 /4/1 hRm   . 

The prime in (12) denotes the derivative with respect to l . From (10) we can write the complete 

wave functionals as   
rl

rlnrln tt
rl

),(, )(][  , where ),,(][ ji nnn   means that mode i  is in 

the in  excited state, mode j  is in the jn  excited state, etc. For 0rln , the ground state wave 

functional corresponds to the BD vacuum.  

Note that extending from d=1 to d=3, we have   222 /4/9 hRm   , 
212hR  , and the mode 

index l  in l  carries labels )3,2,1,( ili which will be suppressed below. Moreover, in the 

continuum limit ( kl  ), from equations (3)-(8) we obtain 
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3. TRANS-PLANCKIAN EFFECTS 

In this section, we consider the massless conformally coupled ( 2/1 ) scalar field in the slow-roll 

inflation. To investigate the possible effects of trans-Planckian physics, we focus on the following CJ 

type dispersion relations 


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where M  is a cutoff scale, s  is an integer, and sb  is an arbitrary coefficient [10-12]. 

3.1.  CJ type Dispersion Relation with Quartic Correction 

We first consider the CJ type dispersion relation (14) with 1s  and 01 b  to obtain the evolution 

of vacuum wave functional. Note that this CJ type dispersion relation can be obtained from theories 

based on quantum gravity models [13-16]. 
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Using ahkkz /   which is the ratio of physical wave number akkphys /  to the inverse of 

Hubble radius, (13) becomes  
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In region I where Makkphys  / , i.e. hMz / , the dispersion relation can be approximated by 

2222 )/( zkak   , and the corresponding wave functional for the initial BD vacuum state is [22]  
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where the prime in (20) denotes the derivative with respect to 2/2z . 
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where the prime in (22) denotes the derivative with respect to z , and the constants 
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Here we choose 
II
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3.2.  CJ type Dispersion Relation with Sextic Correction 

In this subsection, we consider the CJ type dispersion relation (14) with 2s  and 02 b  to obtain 

the evolution of vacuum wave functional. For this case, only (15), (18), and (20) in the subsection 3.1. 
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4. REDUCTION OF COSMOLOGICAL CONSTANT 

Note that the vacuum energy density due to the fluctuations of the inflaton field with maxkk   is given 

by [24] 
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where M  is the momentum cutoff. Because having a non standard dispersion relation is equivalent to 

considering non-vacuum quantum states for the perturbations [25], the finite energy density due to the 

inflaton particles after the subtraction of zero-point energy is given by [26, 27]       
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Thus, we see that there is no back reaction problem if the energy density due to fluctuations of the 

inflaton field is smaller than that due to the inflaton potential, i.e. 
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Within the slow-roll approximation, substituting  8/3)( 22
hMV Pl  (here PlM  

191022.1  GeV is the Planck mass) in (33) leads to 
2

1 )/(48 MMb Pl . For PlMM ~ , the 

constraint on the dispersion parameter 1b  is 
2

1 101.5 b . 

On the other hand, for the case of 2s  and 02 b , using czC 2/1
II

2  in (29), we have 
2

4/1 ck zn  . From (30), (31), and czhbM
4/1

2 , we obtain  

24

2

2

22

4

)2(
3232

c

c

svac zh
b

z

M


 


.                                                 (34) 

There is also no back reaction problem if 

)(
32

24

2

2

)2(



 Vzh

b
csvac 


.                                                    (35) 

Substituting  8/3)( 22
hMV Pl  in (35) leads to 

42

2 )/(144 MMb Pl . For PlMM ~ , the 

constraint on the dispersion parameter 2b  is 
3

2 10.41 b . 

Moreover, if we consider standard linear dispersion relation with both quartic and sextic corrections, 

then the corresponding perturbation energy density due to fluctuations of the inflaton field can be 

rewritten as 

22

2)2()1( )()()( hMchhh svacsvacvac    ,                                              (36) 

where )32/()128/( 22/1

2

2

12  bbc  . For PlMM ~ >> h , the usual parameter choice is 1~1b  

and 1~2b , yielding 
3

2 10~ c . 

Because the vacuum energy density before the beginning of inflation is 
24 8/)0(  Mhvac  , we 

expect that while z  decreases from 1 czz  (near the beginning of inflation ) to czz  , the 

corresponding cosmological constant 
2

/8 Plvac M  decreases as 

  24 //1 PlMM   222

28 PlMhMc ,                                                  (37) 

where the first and second term in (37) comes from (30) and (36) respectively. Such a significant 

reduction appears in the early universe during the inflationary era when the Hubble parameter h  is 

close to the grand unification scale, i.e. 
1510~h GeV. 

Note that current astronomical observations indicate that radiation and matter dominated epoch is 

sandwiched between two asymptotic de Sitter epochs, and the present values of vacuum energy 

density and the cosmological constant are respectively ~0,vac   105.2 47 GeV
4

 and 
84

0 102.4~   GeV
2

[28]. Thus, using the fact that de Sitter geometry is invariant under time 

translation, we propose the possibility that reduction mechanism similar to (37) may reappear during 

the late time acceleration era with the present value of Hubble parameter 
42

0 1043.1~ h GeV such 

that a tiny current value of the cosmological constant may be obtained. For example, evaluating 

 222

28 PlMhMc  with PlMM 9~ , 
42

0 1043.1~  hh  GeV and 
3

2 10~ c  may yield 

the current value of the cosmological constant 
84

0 102.4~   GeV
2

.  
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5. CONCLUSIONS  

In the lattice Schrödinger picture, we have considered the theory of a generically coupled free real 

scalar field in de Sitter space. To investigate the possible effects of trans-Planckian physics on the 

quantum evolution of the vacuum state of scalar field, we focus on the massless conformally coupled 

scalar field in the slow-roll inflation, and consider the CJ type dispersion relations with quartic or sextic 

correction. 

We then calculate explicitly the finite vacuum energy density due to fluctuations of the inflaton field, 

and obtain the corresponding cosmological constant by using the backreaction to constraint the 

magnitude of dispersion parameters. We also show explicitly how the cosmological constant reduces 

significantly during the slow-roll inflationary era at the grand unification phase transition.  

Finally, using the current astronomical observations that radiation and matter dominated epoch is 

sandwiched between two asymptotic de Sitter epochs and the fact that de Sitter geometry is invariant 

under time translation, we propose the possibility that similar reduction mechanism may reappear 

during the late time acceleration era, and yield a tiny current value of the cosmological constant.    
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