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Abstract: In this paper, author solve numerically, using the method of finite differences, the transfer 

equations, laminar, three-dimensional, between inclined isothermal ellipsoid of revolution, and a newtonian 

fluid in vertical upward flow generated by the natural convection. In the boundary layer, the results concerning 

the dimensionless velocity fields and temperatures as well as the Nusselt number and the friction coefficients, 

are represented graphically. With respect to the angle of inclination of the ellipsoid, the author put in evidence 

of the privileged points on the partition of the body. Secondly, the influence of the geometry of the body was also 

considered, in order to assess the adherence of the fluid on the wall and locate the boundary layer separation 

points. 
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NOMENCLATURE 

Roman Letter Symbols 

a thermal diffusivity of the fluid (m
2
.s

-1
)  

a’ length of the semi-axis of the axis of 

revolution, (m) 

b half-axis length perpendicular to the axis 

of revolution of the ellipsoid, (m) 

Cfu meridian friction coefficient 

Cfw azimuthal friction coefficient 

Cp specifique heat capacity at constant pressure 

of the fluid, (J.kg
-1

.K
-1

)  

g acceleration due to gravity, (m.s
-2

)  

L  length reference body, (m)  

Nu  local Nusselt number 

Pr Prandtl number 

r normal distance from the projected M of a 

point Pof the fluid to the axis of revolution 

of the ellipsoid, (m)  

Sx,S factors of geometric configuration 

T∞ temperature of the fluid away from the 

wall, (K)  

Tp temperature of the wall, (K) 

Vx velocity component in x direction, (m.s
-1

)  

Vy velocity component in y direction, (m.s
-1

)  

Vφ velocity component in   direction, (m.s
-1

)  

x, y  meridian and normal coordinates, (m)  

Greek Letter Symbols 

  angle of inclination, ( ° )  

e  eccentric angle,in theliterature,(rad) 

  azimuthal coordinate, ( ° )  

  density of the fluid, (kg.m
-3

)  

  kinematic viscosity, (m
2
.s

-1
)  

  thermal conductivity, (W.m
-1

.K
-1

)  

  dynamic viscosity, (kg.m
-1

.s
-1

)  

  volumetric coefficient and thermal 
expansion, (K

-1
)  

t  angle formed by the major axis and a point 
on the wall, ( ° ) 

Indices/Exponents  

+  dimensionless variables 

1. INTRODUCTION 

This work carries on a study of heat transfers around the rotationally symmetrical body [1-23] given 

their practical interest, especially in machinery. Take for example some hydraulic structures, aircraft, 

turbine engines, propulsion systems for ships, rockets, projectiles, metal deposition techniques in a 

vapor phase. Most of the literature relating to vertical ellipsoid. Among them, as Souad et al [1] 
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studied the heat transfer and unsteady pulse by natural convection within an air-filled ellipsoid of 

revolution and whose wall is to be brought to a constant temperature, is crossed by a flow of constant 

density and warmth they have shown the existence of multicellular structures for certain values of the 

Grash of number and the variation of the form factor. Furthermore, authors observe the transition of 

the system between two equilibrium states and claim that the Nusselt number is monotonically 

decreasing function of time when the flow is unicellular and sharply decreases with each appearance 

or disappearance of cells. Mochimaru [2] studied the numerical simulation of the natural convection 

in a cavity of an ellipsoid of revolution, using a method of spectral finite differences. He found that 

the strength of the circulating movement of the liquid metal layers due to natural convection can be 

well controlled by variation of heat transfer through the wall of the ellipsoid. Olumuyiwa [3] has 

contributed to the heat transfer by convection mixed rotationally elliptical vertical and it confirmed 

that the disturbance parameter is responsible for the lateral displacement of the temperature profile. 

The author compares the results with the published work by Morris [4.5] to check the calculation 

code. Alidina [6] contributed to a study of laminar and permanent three-dimensional flows around the 

ellipsoid of revolution. He showed that on the wall, there is a place where the components do not 

depend on the position of the body in space. Cherif et al [7] contributed in the hydrodynamic control 

by mixed convection of the thickness of the vapor deposition of the semiconductor on the symmetrical 

body. Authors show that the flow and transfer are significantly dependent on this variability and 

which is possible to control the growth of heat and mass boundary layers by acting on the operating 

conditions, in particular on the profiles of body. A. Watson et al [8] studied the steady laminar free 

convection due to an ellipsoid of revolution heated; Xia et al [9] have landed on the natural 

convection of the low pressure gas in the ellipsoidal chamber induced by combined thermal 

conditions. After the works, the survey shows that the various  thermal conditions non-uniform  of 

stratospheric environment exert a significant influence on both thermal and dynamic characteristics of 

natural convection of a gas at low pressure in a chamber. Shapiro et al [10] discussed the vortex 

formation in a thermal elliptical bubble. Lin et al [11] studied the two-dimensional natural convection 

around the body in the axisymmetric case of variable shape. The authors proposed a fast calculation 

procedure based on the coordinate transformation which can express the solutions of the conservation 

equations that govern based on a sequence of universal functions that depend on the Prandtl number 

and the configuration, determined by the contour of the body and its orientation relative to the 

strength of the body which generates the movement. Medvinsky et al [12] discussed a study of the 

conditions to local limits absorption elliptical limits based on the Helmholtz equation and also 

introducing a new boundary condition of an ellipse based on modal expansion. Abel et al [13] studied 

experimentally using air as the working fluid in two distinct cases: one in which the duct is at a 

uniform temperature, and the other where the wall temperature distribution is linear in the axial 

direction and does not vary transversely. 

Given all the research work published on an ellipsoid, the three-dimensional natural convection 

between a Newtonian fluid and an inclined elliptical body, also of great interest, given the 

technological developments in terms of research in the field of heat.  

This work, which aims to analyze the influence of the inclination angle on heat transfer. We consider 

a three-dimensional flow, laminar, continuous, isothermal between a ellipsoid of revolution and a new 

tonian fluid in vertical upward flow created by the natural convection whose the axis of symmetry is 

inclined relative to the vertical direction. The conservation equations are discretized using an implicit 

finite difference scheme. 

2. THEORETICAL FOUNDATIONS 

The model considered is constituted by an ellipsoid of revolution of length L and inclined by an angle 

 relative to the vertical. The body wall is maintained at a constant temperature Tp, different from 

the temperatureT∞ of fluid away from the wall which is also constant. 

The Figure 1shows the spatial configuration of the physical model studied. 
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Figure1. Physical Model and Co-Ordinates System 

2.1. Simplifying Assumptions 

Taking into account the assumptions of Boussinesq, we ask that which follows: 

 The ellipsoid is stationary, 

 Transfers are laminar and permanent, 

 Radiative transfer and viscous energy dissipation are negligible, 

 The fluid is air whose physical properties are constant, except for the variations of density are at 

the origin of the free convection. 

2.2. Conservation Equations in the Boundary Layer 

Let -pT T T  and the appropriate variables are reduced: 
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Then, the dimensionless equations in the boundary layer are written: 

 Equation of Continuity 

1
0

yx x
V VV V dr

x y r r dx





   

 

   

 
   

  
       (1) 

 Momentum Equation 

2 2

2

yx x x
x y x

V V VV V Vdr
V V S T

x y r r dx y

 



    
  



     

  
    

   
       (2)         
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2

x

x y

V V V V V V Vdr
V V S T

x y r r dx y

     




      
  

 

    

   
    

   
      (3) 

Sxet S  are the factors of geometric configuration defined by: 

  sin .cos .cos cos .sinx tS             (4) 

= sin .sinS  
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 Heat Equation 

2

2

1

Pr
x y

VT T T T
V V

x y r y





   
 



   

   
  

   
                     (5) 

Pr
pC

a

 


  , Prandtl number 

The dimensionless boundary conditions associated with these equations are: 

on the wall 0y   

1T   , 0x yV V V
    

                                                                                                                  
(6) 

Awayfrom the wall y   

0T   , 0x yV V V
    

                                                                                                                
(7) 

2.3. Nusselt Number and Friction Coefficients 

- Nusseltnumber 

1

4

0y

T
NuGr

y





 

 
  

                                                                                                                        

(8) 

- friction coefficients 

0 0

,x
u f f

y y

VV
Cf Lc Cf Lc

y y





 



  

  
                                                                                  

(9) 

3. NUMERICAL SOLUTION 

The wall of the ellipsoid is divided into small elementary surfaces curvilinear using Np parallel 

perpendicular to the axis of revolution (OO')and Nm meridians passing through the centers O and O '. 

The intersection points of these parallel and meridians defining the nodes of the mesh from which the 

calculations are made of the wall towards of fluid following normal. The dimensionless equations are 

discretized by the method of finite differences in its implicit form. 

The study area is divided into N x M x L curvilinear parallelepipeds attached to the body anddefined 

by the steps dimensionless x , y et  . L and N are predetermined (Np, Nm), as directly related 

to the geometrical discretization of the body. Regarding M, it should be noted that, for a given stack 

cued for example by p, the thickness of the boundary layer is not known in advance and the index 

(JMAX) p characterizes the thickness, exchange a priori of a stack to another. Then M is thus defined 

by the relationship: 

Lx N

p=1

M = (JMAX)p     (10) 

The calculations are performed with the nodes (i+1,j,k), with 1 I , 1i MAX j JMAX    et 

1 k KMAX  . For the dimensionless quantities , ,x yV V V et T

   
, we approach the partial 

derivatives as follows, X is one of them and the unknown variables being indexed by i + 1.   

The terms xV 
 in the operator xV

x








, yV 

 in the operator yV
y








  andV


 in the operator V










 

are replaced by the values      
1, 1, 1,

, ,
k k k

x y
i j i j i j

V V V
  

  
 calculated at the nodes (i+1, j, k).  

For clarity, we note respectively U, V, W and T, the components meridian, normal, azimuthal and 

dimensionless temperature. After arrangement, the discretized equations can respectively be 

expressed in the following form : 

1 1 2 max 1j j j jAX BX CX D j J            (11) 
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The algebraic systems (11) associated with boundary conditions discretized are solved by the Thomas 

algorithm. As for the normal component dimensionless
yV 

, it is obtained from the discretization of 

the continuity equation using the relationship: 

1 -1

1, , 1, 1, 1, 1,

1, 1, 1 1, -1

1 1

- 3 - 41
3 2 1-

4 2

k k k k k k

i j i j i j i j i j i jk k k i

i j i j i j

i i

U U W W W U r
V V V y

x r x r

 

    

      

    


     

  

   
   

   
   (12) 

With  1 1, 1 1 et 2 max 1i N k L j J        

The convergence criterion within the boundary layer is assured when: 

 

1

1

( ) ( )

( ) , ( )

p p

p p

X X

Sup X X







    (13) 

( ) pX et
1( ) pX 
 are respectively the values of the variable X to iterations p and p + 1. 

4. RESULTS AND DISCUSSION 

To prove the accuracy of our results, we validated the digital code by comparing the results of our 

calculations with those deduced from the literature, in the case of an axisymmetric system of an 

elongated ellipsoid. The table IV-1, illustrating the evolution of the heat exchange ratio based on the 

eccentric angle in a range of 0 to  , Pr = 1.0, shows that our results are in good agreement with those 

in the literature [20 ] and the relative deviation of not more than 1%.In the same table, we also 

compare the results with those obtained by Merkin [19], it seems reasonable to conclude that the 

agreement is good. 

Table IV-1. Numerical values of heat transfer coefficient, [0, ]e  , Pr =1.0, b/a’=0.25 

 

In our results, we set Pr = 0,72.The representation of U+, against x + shows the existence, in the plane 

of symmetry characterized by 0 and 180     , of a curvilinear abscissa x+=0.43 privileged 

wherein x+ do not depend on the inclination angle  (Figure 2.a). This independence extends within 

an area from x + = 0.2 to x+= 0.6 on the meridian defined by 90   (Figure 2.b). 

In these figures, the curve corresponding to the vertical ellipsoid ( =0°) is a dividing line between 

the values relative for x+<0.43 and that on x+> 0.43. In the latter, the manners they show increases 

with the inclination, for 0   and decreases on the meridian of equation 180   . In these 

developments, it is thus observed that the variations of the tangential component are reversed for x+> 

0.43. 

For this privileged abscissa, there is a value at which U+ does not depend on the inclination alpha  

and that this region is in the vicinity of 90 °(Figure 2.c). 
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The figure 2.d shows that U+ against x+ decreases when a / c increases. The change in this component 

in figure 2.e, illustrates that increasing the ratio a/c reduces the thickness of the boundary layer. 

 
                                                                  (b)                                              (c) 

 
 

Figure 2: Meridian Component of the Velocity, for Different Values of   

(a): U+ against  x+, 0 and 180      ;(b) : U+ against  x+, 90    ;  (c) :  U+ against  , 

x+=0.24,0.43,0.61, (d):U+ against x+, for different values of a/c, 0 , 0 and10       ; (e): U+ against y+, 

for different values of a/c, 180 , 0 and10       

For the privileged abscissa x+ = 0.43, the variation curves of U +, against y+ do not depend either to
, for 0 ,90 ,180     and the figures 3.a and 3.b illustrate this phenomenon. 

 
(a)                                                           (b) 

Figure3. Meridian Component of the Velocity Against Y+, For Different Values of  and  X+=0.24, 0.43, 0.61 

(a) : 0 180et     ;(b) : 90    

These figures confirm that the thickness of the boundary layer increases with the curvilinear abscissa 

and the meridional velocity varies from zero at the wall to a zero value outside of the boundary layer 

(a) 

(d) (e) 
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through positive values within thereof.   In the case of a non-axisymmetric system, it looks as much 

on the azimuthal component dimensionless W + and, the figures 4.a and 4.bconfirm constantly for x+ 

= 0.24, the angle of inclination has no influence on this component and is thus dependent on the latter 

regardless of the value of y+(Figures 5.a and 5.b).  

 
(a)                                                         (b) 

Figure4.  Azimuthal Component of the Velocity, for Different Values of   

(a) : W+ against x+, 45 and 135     ;(b) : W+ against  , x+=0.09, 0.24, 0.61 

 
(a)                                                       (b) 

Figure5. Azimuthal Component of the Velocity Against Y+, for Different Values of  and 

X+=0.09,0.24,0.50,0.70. 

(a): 45    ; (b) : , 90    

 
(c)                                   (d) 

Figure5.c. Azimuthal Component of the Velocity, for Different Values of  , 

(c): W+ Against X+, =90° ;(d) : W+ Against  , X+=0.50, 0.70 

However, we can add notes as, there is one and only one point on the wall of the ellipsoid for which 

W+ is not dependent on the inclination, for x+ 0,24and even for 90 and 0, 20 0, 60x


    (Figures 

5.cand5.d). 
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(d)                                          (e) 

Figure 6: Azimuthal Component of the Velocity, for Different Values of   

(a) W+ against x+,  =90° ; (b) : W+ against , x+=0.09 ;(c): W+ against y+, =90°, x+=0.09 and 0.7; d):W+ 

against x+ for different values of a/c, =45°; (e):W+ against y+ for different values of a/c,  =45° and =90° 

The Figures 7.a, 7.b illustrate the evolution of the normal component dimensionless V +, for several 
values of  ,  =0° and 180°. The curves corresponding to  =0° and 180°,evolves from either side 
and relating to the axisymmetric flow ( =0°).  On the meridian defined by =90°, V+ no longer 
depends on the inclination for 0,2 0,6x  .However, V+ admits one to three privileged points for 
a fixed value, for example x+= 0.32, then, the coordinates points are defined by (x+=0.32,  =0°), 
(x+=0.32,  =90°) and (x+=0.32,  =180°) (Figure 7.c). 

Figures 7.d and 7.e illustrate the changes of the normal component as a function of y+, for multiple 
values of a/c. In the latter it show at the equator the fluid particles are sucked towards the wall. In 
addition, V+ decreases with the growth of a/c 

(a) (b) (c) 

 

(a) (b) (c) 
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Figure7. Normal Component of the Velocity, for Several Values of   

(a): V+ against x+, for =0° and 180° ;  (b) : V+ against x+, =90° ;(c) : V+ against , for x+=0.16, 0.32, 

0.50, 0.70; (d ): V+ against y+,for several values of a/c,  =0°; (e):V+against y+,for several values of a/c, 
=180° 

The dimensionless temperature field has the same features as that of U+ and the Figures 8.a and 
8.bshow the existence of privileged points on the wall of the ellipsoid for which T+ is independent of 
the inclination . We also note that the temperature varies weakly with   in the plane of symmetry 

0 (Figure 8.c).Figure 8.d shows the variations of the dimensionless temperature as a function of x+, 
for multiple values of a/c. In this figure we can confirm that the temperature decreases with increasing 
of the values of a/c. 

 
  

 
  

Figure8. Temperature Profile, for Several Values of  

(a) : T+ against  x+,  =0° and  =180° ; (b) : T+ against  , x+=0.24, 0.43, 0.61 ; 

(c) :T+ against  y+, x+=0.24,  =0° and  =180°; (d): T+ against  x+ for several values of a/c, =90° 

(b) 

(d) (e) 

(c) 
(d) 

(a) 
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In the case of dimensionless quantity
1

4NuG


, we constantly observe the peculiarities concerning the 

temperature. In case of presence of convection due to movement of a fluid in laminar flow, the heat 

transfer will be made primarily by fluid displacement and certainly, the number is none other than the 

dimensionless temperature gradient at the wall, while its variations depend to exchanges between the 

wall and the fluid. In our case, given the hypothesis relating thereto, we note that the dimensionless 

quantity
1

4NuG


present in the menner regressive. This indicates that, the heat exchange decreases 

gradually as one moves the wall according to the movements of the particles following dimensionless 

directions x + and y+. Furthermore, it is independent of angle α with the dimensionless direction x + 

on the meridian equation  =90° (Figure 9.a, 9.b and 9.c). 

Figure 9.c shows that the dimensionless quantity present in way regressive in terms of x +. However, 

the heat exchange is increasingly significant by increasing the form factor of definition. 

 
 

Figure9. Nusselt Number Against X+, for Several Values of   

(a ) :  =0° and  =180° ; (b) : =90° ; (c)  :  =90°,  for several values of a/c 

Figures 10.a and 10.b show some curves of changes in the coefficient of friction Cfu to show the 

existence of maximum warning of separation of the boundary layer. These points are naturally closer 

to the pole of ellipsoid for=0° that for=180°. 

 
(a)                                                                (b) 

Figure10. Tangential and Azimuthal Friction Coefficients Against X+, for Several Values of  . 

(a) : Cfu  for =0° and  =180° ;(b) :Cfu and Cfw for  =90° 

Figure 11, showing the changes in Cfwagainst , shows that it is zero in the plane of symmetry and 

confirms that this size increases with  . 

(a) (b) (c) 
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Figure11. Azimuthal Friction Coefficient Against  ,  for Different Values of   

(a) Cfw for  x+=0.09 and 0.50 ; (b) :  Cfw for x+=0.09,0.24,0.50,0.70,  =5° and 15° 

Increasing the amplitude of this dimensionless magnitude in the negative pole confirms, that a strong 

adherence of fluid particles to the wall when the body is strongly inclined.  

 
 

Figure12. Azimuthal Friction Coefficient against x+, for Different Values of A/C. 

(a) Cfw, for =0° and 10°, x+ =0°  ; (b) :  Cfw for x+=45°, =0° and 10° 

The variations of Cfu in the figure 12.a show the existence of maximum, warning detachment 

boundary layers at abscissa closer to the equator. As for Cfw it depends relatively little of the form 

factor, and figure 12.b illustrates its developments. 

5. CONCLUSION 

In this article, we presented the distributions of speed and temperature as well as the local values of 
Nusselt number and friction coefficients. In the case of a pure natural convection, it appears in the 
calculations that on the wall of the ellipsoid, there seems exist the privileged coordinate values for 
which the tilt angle has little effect on the dynamic and thermal quantities. Their position depends of 
course on the curvilinear abscissa and in the vicinity of the meridian equation =90°. 

In these results, a presence of suction of the particles on the lower meridian, when the body is strongly 

inclined and this phenomenon causes a slight disruption. After the analyzes, we find that the thickness 

of the boundary layer varies and depends on the curvilinear abscissa and of the tilt. The results for the 

normal component according to the normal coordinate illustrate its evolution in terms of thickness. 

In this work, we reported the effects of the inclination angle of the body, by considering also the 

variability of the form factor. 

In this study, the calculations were made beyond the equator in order to assess the adherence of the 
fluid on the wall and locate the boundary layer separation points.  

(a) (b) 

(a) (b) 
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In general, they are, on the upper part of the ellipsoid, to much larger values of the azimuthal angle 
that the curvilinear abscissa is greater. 

Soon, it would be desirable to consider the transfer of heat and pulse based on variations of the form 
factor and inclination or even coupled to a material transport and take into account the unstable 
boundary conditions.   
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