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Abstract: Due to off-center relativistic motion of the charged sp&mts and the local momentum-imbalance of the
participants, a short-lived huge magnetic field is likelyngeated, especially in relativistic heavy-ion collision#n
determining the temperature dependence of bulk and sheaosities of the QCD matter in vanishing and finite
magnetic field, we utilize mean field approximation to the 33Bplyakov linear-sigma model (PLSM). We compare
between the results from two different approaches; GreebeKcorrelation and Boltzmann master equation with
Chapman-Enskog expansion. We find that both approaches deast identical results, especially in the hadron
phase. In the temperature dependence of bulk and shearsitissorelative to thermal entropy at the critical tem-
perature, there is a rapid decrease in the chiral phase-4idaon and in the critical temperature with increasing
magnetic field. As the magnetic field strength increases,ak pppears at the critical temperaturd’{). This can
be understood from the small drop on the thermal entrop{ atwhich can be interpreted due to instability in the
hydrodynamic flow of the quark-gluon plasma and soft statishadronization. It is obvious that, increasing magneti
field accelerates the transition from hadron to QGP phasesefise catalysis), i.e., taking place at lower temperagure

Keywords: Chiral transition, Magnetic fields, Magnetic catalysis, if@ral temperature, Viscous properties of
QGP

1. INTRODUCTION

Recently, the study of the influence of strong magnetic fieldQuantum Chromodynamics (QCD) apparently gains
increasing popularity among particle physicists. Suchr@ngt magnetic field can be reproduced in various high-energy
regimes such as early universe and non-central heavy-itisieos (HIC) [1, 2]. In the heavy-ion experiments, a huge
magnetic field can be created due to the relativistic motf@harged spectators and the local momentum-imbalanceof th
participants. At SPS, RHIC and LHC energies, the expecteghetic field ranges betweénl m2, m2 and10 — 15m?2,
respectively [1, 3], where:2 ~ 10% Gauss.

The influence on QCD doesn’t only cause catalysis of the chjrmmetry breaking [4, 5] but also modifies the chiral
phase structure of the hadron production. Also, it changesature of the chiral phase-transition [6—8] and the gnerg
loss due to quark synchrotron radiation [3, 9]. Furthermtite magnetic field does not only come up with essential
effects during the early stages of HIC, but also during tkerlanes, where the response of the magnetic effect is assume
to have a large in-medium-dependence. The latter depentiearariation of the magnetic diffusion time [3, 9] and the
electrical conductivity which are medium depending [10, 11

The description of the chiral and deconfinement phaseisiteiof the hadrons, the characterization of the QGP prigsert
and the definition of the critical endpoint (CEP) are exammplesignificant researches conducted during last decatles. T
transport properties are particularly helpful in charezteg strongly interacting QCD matter, such as the phasesition,

the critical endpoint, etc. [12]. The viscous transporigendies have been reviewed in Ref. [13]. The response of €2 Q
matter to an external magnetic field can be described by éimsport coefficients, such as bulk and shear viscosities. In
the present study, we extend our previous work [14], whezeégmperature dependence of bulk and shear viscosities was
deduced from SW) PLSM to a finite magnetic field [15]. The bulK(T’, e B)] and shear{(T’, e B)] viscosity normalized

to the entropy density(T, e B) shall be calculated at finite temperatures and magneticditedahgths. We also address
the chiral and deconfinement phase-transitions in finitematgfield.
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First, we recall that so-far various LSM-calculations haeen performed in order to determine the viscous propesties
the QCD matter [16—18]. Based on Boltzmann-Uehling-Uhtak(BBU) equation and Green-Kubo (GK) correlation,
n/s has been estimated in the large-N limit [16]. Algg,s in the large-N limit has been calculated from Boltzmann-
Uehling-Uhlenbeck [17]. From relaxation time approximatiRTA) and BUU equation, the shear and bulk viscosity
have been calculated in SRJ(LSM [18]. Second, from BUU equation with relaxation timeguapximation, some of such
dissipative properties haven been studied from the hadsmmance gas (HRG) model with excluded-volume corrections
as function of temperature and baryon chemical potentijl [1

In the present work, it is assumed that the temperature depee of QCD viscous properties such as bulk and shear
viscosity are strongly affected by the huge short-lived n#ig field, which can be generated in relativistic heavy-io
collisions. We study their dependence on various magnetlit §trengths. We present a direct estimation for both types
of viscosity coefficients from PLSM by using BUU and GK appebes. For the first time, a systematic study in U(
PLSM in vanishing and nonzero magnetic field is presentedh &uvay we can compare between the results from these
two different approaches. A rapid decrease in the chirasgliensition and in the critical temperature with inchegs
magnetic field is observed. Increasing magnetic field is mpamied by phase transitions that take place at lower afitic
temperatures relative to the ones at vanishing magnetitsfiéh other words, increasing magnetic field leads to a dsere

in the corresponding critical temperature (inverse catajy

This paper is organized as follows, we briefly describe PLBkéan field approximation in section in which information
about hadron matter in the presence of magnetic field isdtleduBUU and GK approaches are introduced in section and
elaborated in Appendices and , respectively. The temperdipendence of the relaxation time and the bulk and shear
viscosities normalized to the thermal entropy at finite neigrfield strength and vanishing chemical potential shall b
elaborated in section . This is followed by the conclusions&ction .

2. REMINDER TO SU(@3) LINEAR-SIGMA MODEL WITH MEAN FIELD APPROXIMATION

The exchange of energy between particle and antipartidiengperature’{’) and baryon chemical potentigt ) can be
included in the grand canonical partition functiaf)(

Z = /E[DaaDwa/Dwa_Jexp /z(ﬁ—i-;uﬂ/_)f'yowf) , 1)

where [ =i ;Jl/T dt fv d3z andV is the volume of the system of interest. The subscfipefers to quark flavors

and thereforg.s is the chemical potential for quark flavofs= (I, s, 1,5). One can define a uniform blind chemical
potentialyy = py.a = ps [20-22] as a result of the assumption of symmetric quarkenatid degenerate light quarks.
L is a Lagrangian coupled the chiral LSM Lagrangian with théy&kov loops potentiall = Lapirgl — U (¢, 0", T).
More details about the PLSM model can be found in Refs. [2B—Rforeover, the free energy can be givenjfas=
=T -log[ Z]/V or

F = Ulor,06) +U(, 9", T) 4 Qqq(T', puy, B) + S0,e8 Qaq (T pr5)- 2)
e The purely mesonic potential is given as

2

Uloy,05) = —hyoy — hsos + mT (0 +0%) — 2—\6/501205
A 2\ A A A
+ogofot+ P2y Bl ®

¢ In the present work, we implement the polynomial form of tlodyBkov loop potential [26—29],

U T bo (T b b 2
@ oL~ B (16 4 19 ?) =22 (97 4 9% 4 2 (107 +167F) (4)
whereby(T) = ag + a1 (To/T) + az (To/T)* + a3 (To/T)>. With the parameters, = 6.75, a; = —1.95,

as = 2.625, a3 = —7.44, by = 0.75 andb, = 7.5 [26], the pure gauge QCD thermodynamics is well reproduced.
For a better agreement with lattice QCD simulations, thiicalitemperaturéy is fixed at187 MeV for Ny = 2+1
[28].

e The quarks and antiquark contribution to the medium padéoén be divided into two regimes.
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— In vanishing magnetic fielce = 0) but at finiteT" andy ¢ [30],
U(T.ss) = 2T | o s ©)

When introducing Polyakov—loop corrections to the quadéegrees of freedom, then the quark Fermi-Dirac
distribution function becomes

Ef—n Es—p E;—p
f-f(T’M):ln[1+3(¢+¢€ fo)xe fo+e*3 Lt , ©6)

whereE; = (mf[ +p?)1/2 is the dispersion relation gf-th quark flavor. For antiquarkg,and¢* are replaced
with each other and the chemical potential should be replaced by.

— In nonzero magnetic fielde@ # 0) but at finite7" and ¢, the concepts of Landau quantization and mag-
netic catalysis, where the magnetic field is assumed to leat®d along-direction, should be implemented.
According to the magnetic catalysis [31],

[ e > [ -

BT <& >
Oun(Tons B) = -2 LS @~ d0) [ do. 5o ) @
f v=0 0
The distribution function in finite magnetic field can be giwaes
F/(T.peB) = In [1+3<¢>+¢> e B"%“’) e~ Et 3| 9)

For antiquarks, a similar expression can derived. It iswotéhy highlighting that the dispersion relation in
nonzero magnetic field gets modification as follows.

Epys = [p2+m?+gs|(2n+1-0)B]"". (10)

The quantization numberj is known as the Landau quantum numbero is related to the spin quantum
numbero = +5/2 and to the masses of quark-flavbe= [, s with [ runs overu andd quarks and the other
subscript stands for-quarks. For the latter, the massed are directly coupldogsigma fields
g Os
mp=g—, ms =g —. 11

1=97 97 (11)
We note that the quanti§n + 1 — o can be replaced by sum over the Landau Levels. For compktewe
mention tha — dy, represents degenerate Landau Levels.

When assuming global minimization of the free energy,(
OF OF _OF _ OF
do;  Oos,  0¢p  Oo* min

=0, (12)

the remaining parametets = 4;, 0, = d,, » = ¢ and¢* = ¢* and their dependences @ n andeB can be
determined.

3. APPROACHES
3.1. BOLTZMANN -UEHLING -UHLENBECK (BUU) EQUATION

¢From relativistic kinetic theory, the transport coeffidieof the system of interest can be estimated in non-Abelian
external field. At finite baryon (fermion) density, the redéinn time approximation can be applied to the Boltzmann-
Uehling-Uhlenbeck (BUU) equation [18] with Chapman-Englexpansion. The Bulk and shear viscosities are given as
[18],

d3 T 2 2
(T ) = TZ = % - am| sy, (13)

p4
a(Tp) = 15TZ [ & T 1S T
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In a nonzero magnetic fieléB # 0), it is convenient to derive the relaxation time approxiimaformulas for bulk and
shear viscosity. We start with BUU and Chapman-Enskog esipanMore details are elaborated in Appendix . The bulk
and shear viscosities read

2
(T, p,eB) = Qf|B Z/ dp (2 — 60u) Tf [ﬂ _ CQEB f:| F(T, ), (14)

W(T.1.cB) = MZ YIS [ 5t et (15)

3.2. GREEN-KUBO (GK) C ORRELATION

Corresponding to dissipative fluxes, the Green-Kubo (GKatation, which is based on the linear response theory JLRT
[32, 33], directly relates the transport coefficients to @udl in equilibrium correlation. The dissipative fluxes asated

as perturbations to the local thermal equilibrium. In dadihig, the transport coefficients associated with the caeser
guantities can be formulated as the expected values afitequih [32, 33]. The lowest order contribution to bulk and
shear viscosity, respectively [32, 33] are given as

2
(= 2TZ [ % e @i (16)
3 T
W(T) = ﬁ; | G Bt setr 1 110, ar

where the Fermi-Dirac distribution function f@rth quark flavorfs (7, i) is given by Eq. (6).
In a nonzero magnetic fieldB # 0 and by using LRT (diagrammatic approach), Appendix , th& ol shear viscosity,
respectively, can be given as

C(T,/L,@B) = 2TZ|Qf|BZ/dp 2- 6OV

{@ e Egﬁfr £ eB)[1 - £5(T. peB)]. (18)

(T, p,eB) = LTZ Z/ i (2 = 6ov) Iﬂ & ff(T i, eB) [1 — [T, uveB)} (19)
f v

4. RESULTS

4.1 QUARK RELAXATION TIME

In order to compute bulk and shear viscosities from BUU or Gigraaches, Sec. and Sec. , respectively, a reliable
estimation for the relaxation time () is very essential. In framework of PLSM, the quark flavorsresent the effective
degrees of freedom, especially at high temperatures. Thesglaxation time of such a quark system is what we need
to estimate for the present work. At low temperatures, tllrdvaic degrees of freedom, pion and sigma mesons, become
dominant.

For a microscopic consideration, the relaxation time catdiermined from the thermal average of total elastic scatfe

and depends on the relative cross sectigiT),

7 = [ng (vra(T) o (T))] (20)

where(v,;) is the mean relative velocity between the two colliding jotes andn ¢ is their number density.
In relativistic kinetic theory, the shear viscosity norimat to thermal entropy/ s) likely remains unchanged due to the
dynamics of the collisions [35]. In local spacetime cooad@s, this ratio gives an estimation for the strength of tbes
sectionoy, in i-th cell [34]

4 ()i 1

Utr,i(T) = Em 77—/3’ (21)
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Fig. 1: (Color online) The relaxation time of-th quark flavor ) is calculated from PLSM in dependence on temperature dshiag baryon
chemical potential and different magnetic field strengtBs= 0.0 GeV2 (solid) e B = 0.2 GeV? (dotted) anc:B = 0.4 GeV? (dot-dashed curve).

with 47n/s sets in the range betwednand4 and p; is energy density. For the sake of simplicity, the tempegatu
dependence af;, ; can be determined from a free massless gas, which is lik&lteceto relativistic collisions. In this
limit, the entropy is given by /73 = g; (2 7%)/45. At vanishingu;, thenoy, ~ T2 [35]. Furthermore, from Bjorken
picture [36, 37],T ~ 7~ '/3, o, ~ 72/3 and the cross sectiofy,, ~ T~2. In light of this, the relaxation time can
approximately be determined from PLSM number density. dtsggerature evolution is thus very obvious. The density
dependence requires to keepfinite in Eq. (21). The present work, in contrary, assumessiang chemical potential.

In Fig. 1, a numerical estimation for the relaxation timefeth quark flavor ¢;) in a wide range of temperature and
magnetic field strengthsB = 0.0 GeV? (solid),eB = 0.2 GeV? (dotted) anc:B = 0.4 GeV? (dot-dashed curve) is de-
picted. It is obvious that increasing the magnetic fieldrgith lowers the relaxation time, especially at low tempees.

In other words, the stronger becomes the magnetic fieldgitnehe slower is the temperature dependence of the relax-
ation time. In this temperature limit; almost exponentially decreases with the temperature. gkt témperatures, the
relaxation time becomes nearly temperature independmyardless a very slow increaserinis observed with increasing
temperature.

4.2. BULK AND SHEAR VISCOSITIES FROM BUU AND GK FORMULATIONS

eB= 0.0 GeV : eB=0.0 GeV/

eB= 0.2 GeV eB=0.2 Ge¥f

5 ] s5F: ]
eB= 0.4 GeV i eB= 0.4 GeV
@ 1r - (a) BUU W =0.0 MeV 2 1 (b) Green-Kubo p =0.0 MeV
=g &, =
02F ot Ay e
[ _KSSbound _ et
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

Fig. 2: (Color online)n/s calculated from PLSM at different magnetic filed strengéis = 0.0 GeV? (solid), eB = 0.2 GeV? (dotted) and
eB = 0.4 Ge\? (dot-dashed) and at vanishing chemical potential is given function of temperature. Left-hand panel (a) shows thelteform
Boltzmann-Uehling-Uhlenbeck equation, while the rightiti panel (b) presents the results from Green-Kubo caoelat

Fig. 2 depicts the magnetic field effects on the temperatepeddence af/s at vanishing chemical potential. The solid
curve presents the results at a vanishing magnetic fieldewlhe results atB = 0.2 and0.4 GeV? are given as dotted
and dot-dashed curves, respectively. The left-hand pajhehpws,;/s as calculated from Boltzmann-Uehling-Uhlenbeck
equation and the right-panel presents the calculatioms & correlation. The Kovtun, Son, and Starinets (KSS) limit
is represented by dashed line.

It is obvious that both approaches give almost identigal values. Their temperature dependence is almost similar.
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Almost same results have been reported in Ref. [16]. The rglti starts from a very large value at low temperature.
Increasing temperature almost exponentially decreaéesBut at high temperature, there is a small increase observed
with increasing temperature. In nonzero magnetic fieldrethie an obvious enhancement in the rapid decrease relative
to its values at low temperature. Furthermore, increagiegriagnetic field strength makes the temperature-depeadenc
more steeply. It is worthwhile to notice the appearance afatterizing peaks at the critical temperature. Such peaks
are connected with minima at lower temperatures. At highpeature, there is a slight increasejins with increasing
temperature. Furthermore, we notice that the resuljisgseems not depending e. Also, we notice that our numerical
estimations for)/s from PLSM is larger than KSS limit.

Some remarks on the peaks that characterize the phasditmaase in order now. The magnetic field is believed to keep
some effects from the hadronic phase and affects the maproduction and the deconfinement [38]. Accordingly, the
peaks seems to favor two different scenarios. The first otteeinstability in the hydrodynamic flow of QGP [39]. The
second one is the soft statistical hadronization [40, 41]high temperatures, the QCD coupling become weak and the
hadrons are entirely liberated into quarks and gluons.

0.2 ‘ 0.2 ‘
eB=0.0 GeV eB=0.0 GeV/
eB=0.2 GeV eB=0.2 Ge¥f
015} eB= 0.4 GeV 1 0.15} eB= 0.4 GeV
@ 0.1r (a) BUU p1=0.0 MeV K4 0.1r (b) Green-Kubo p=0.0 MeV
NS NS
0.05} 0.05
0.5 1 15 2 2.5 05 1 1.5 2 2.5
T/T, TIT,

Fig. 3: (Color online)¢/s is illustrated as a function of temperature at vanishingrdbal potential and various magnetic field streng#B, = 0.0
(solid),eB = 0.2 (dotted) ance B = 0.4 GeV? (dot-dashed curve). Left-hand panel (a) shows results ®itid equation. The right-hand panel (b)
gives the results from GK correlation.

Fig. 3 depicts the influence of finite magnetic field on the terapure dependence of the bulk viscosity normalized to
the thermal entropy((/s) at vanishing chemical potential. The solid curve illustgathe results in vanishing magnetic
field. The calculations atB = 0.2 andeB = 0.4 Ge\? are presented as dotted and dot-dashed curves, respeclivel
left-hand panel (a) shows/s from Boltzmann-Uehling-Uhlenbeck equation. The righttipanel is devoted to the same
calculations but from Green-Kubo correlation.

It is obvious that both approaches lead to remarkably ahidesttical( /s-temperature-dependence. In this regard, even
the magnetic field strength does not matter. In both appesdhcreasingB reduces the value af/s, especially at
low temperatures. At temperatures exceeding the critinal ¢the influence of the magnetic field strength drastically
reduces. That both BUU and GK produce almost identj¢alcan be understood when comparing Eq. (15) and Eq. (19).
Furthermore, GK is based on correlation of the transporfficients in and out of equilibrium, while BUU is a generic
formalism for all possible interaction in the relativisigstem.

Itis assumed that, the bulk viscosity can be understood asfammal equation of state and is a suitable approximation f
the weak interaction between quarks and gluons [42]. Furtbee,(/s is believed to draws a picture about massive-to-
massless particle ratios. At temperatures exceedingiticatone, we noticed that,/ s infinitesimally decreases with the
temperature, especially in nonzero magnetic field. Thisddpnce characterizes a tiny weak coupling between quarks
and gluons, where the deconfinement matter becomes dom#tt negligible monotonic decrease refers to completion
of the phase transition from hadrons to quarks.

Furthermore, we notice that the magnetic field seems to eehan appearance of characterizing peaks at the critical
temperatures. The peaks are accompanied with minima atlmpératures.

5. CONCLUSIONS

In this paper, we have utilized PLSM with mean field approxiorain presence of finite magnetic field in order to
address the chiral and deconfinement phase-transitionfriéfty described the structure of PLSM and shown possible
modifications due to finite magnetic field.

Studying the magnetic field effects on the transport progestuch as bulk) and shear viscosityf, elaborates essential
characteristics of the strongly interacting QCD matterigafiow. Both bulk and shear viscosities can be derived frem t
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different approaches. We first utilized the Green-Kubo apph for two-point correlation functions from linear reape
theory in order to estimate the lowest order of the viscoopeirties in finite magnetic field. Secondly, we used Boltzman
master equation with Chapman-Enskog expansion in ordegrivedthe relaxation time approximation formulas for both
bulk and shear viscosities in nonzero magnetic fields. Welode that both approaches are almost identical, espgciall
in the hadron phase. This is not the case in the QGP phasdieFure, we notice that both quantities (bulk and shear
viscosity) are strongly related to the phase transitiontewdit responses to the instability in the hydrodynamicalftd
QGP. Even soft-statistical hadronization leaves fingatpian bulk and shear viscosity. It is noteworthy mentiorihag,
they are related to some experimental observables at RHIC HE [39]. At finite magnetic fields, we have calculated
¢/s as a function of temperature at vanishing baryon chemicg@mntial. In this regard, we highlight that the speed of
sound (or the equation of state) plays an important roletimesingn/s.

This result confirms the rapid decrease in the chiral phasesition as well as considerable drop in the critical terapee
take place with increasing magnetic field. As the magnetid ficreases, a peak appears at the critical temperaturg. Th
can be understood from the small decrease in the thermalmn&tT,. The latter can be interpreted due to instability in
the hydrodynamic flow of QGP and soft statistical hadromiratAlso, increasing magnetic field accelerates the ttiamsi
from hadron to QGP phases, i.e., makes it possible to at lteweperatures.

VISCOSITY FROM BOLTZMANN -UEHLING -UHLENBECK (BUU) EQUATION

The coefficients of the spatial components of the differdreteveen in- and out-of-equilibrium energy-momentum tenso
with respect to the Lagrangian density define the transpopearties of the system of interest [43]. For an equilibrium
state having quark flavorg where every quark possesses the momeniuime phase space distribution is given ﬁ)‘]

Eq. (6). For Fermi-Dirac distribution, the symmetric energomentum tensor reads [44]

T = —pgh" + Hulu” + ATH, (22)

whereu”!* being four velocityp is the pressure, arid = p + € is the enthalpy density with= —p + T's + Aeld s the

energy density including the energy density due to the enés of finite magnetic filed®ld — ¢ 5. M [45] ands is the
entropy density. When adding a dissipative paff’** to the energy-momentum tensor, then

2
ATW — n(D“u” + D"u + gAWa,,uU) — (AP 90, (23)

and the Landau-Lifshitz conditiom,, AT** = 0 [44], is satisfied. In local rest-frame, the hydrodynamipaxsion reads
[44]

ST — zf:/dr*%[—f\f Oou” — By py Dy (%)

2
+Cr P} (D + DV + A 9 ) | £, (24)

wheredI™ stands for generic phase-space, the sum runs over indegiasaagributions from quarks or antiquarks, i.e.,
assuming point interactions aotl, By andC; are functions depending on momentpm

In the framework of PLSM at nonzero magnetic field and takimg iconsideration the inverse magnetic catalysis and
by implementing Landau quantization [31], a dimension i d to d — 2 becomes possible and the magnetic field is
assumed to affect on a point in thalirection,B = B é,. Accordingly, the phase space distribution should be medlifi
to Eq. (7)

dI'* =

dgk |Qf |B
@) 2 JE-TE (25)

Due to symmetry, the integration ovéy in Eq. (24) tends to zero and the derivative in local restavanishes as
well, i.e., dpup = 0. Thus the summation over andv is equivalent to sum over the spatial indigegindo, i.e.,
pfpfpfp Ip¢|*(8ij00p + 6i0djp + 0ipdjo). Also, in local rest-framep; = p. Equating both Egs. (23) and Eq. (22)
stralghtforwardly determines the dissipative parts (karkl shear, respectively) of the energy-momentum tensas. It
advantageous to work in the local rest frame of the fluid. Téasls to the bulk and shear viscosity [18]

¢ = —Z'qleZ/dk (2 —dov) |p| -fr Ay (26)

"= 152'”'Bz/d’“ 2 6) 'p' Lo gicy. (@)
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For an out-of-equilibrium state, the four velocity (x) shouldn't necessarily remain constant in space and timesiVh
assuming a very small departure from local equilibrium,

frl@.p) = £ (wip'/T) [1+ ()], (28)
where
b5 = [~ Ardou” — BrpyD, (B) + cp iy (Drur + Dowr 4 26 a,ur)] (29)

In order to determined; andC, we use Boltzmann master equation [18],

Ofs(x,t,p) 0 0 0 o op
ostin _ ( ) e

ot o tar o Tap o p) = Clfsl. (30)

The right-hand side gives the collision integral. For eitins{:} < {j}), the equilibrium distribution functions are
identical, i.e.j{ef} = fej [18] and the collision integral becomes

c= ¥ Z|Qf|32 501/5/

{i{ahf v

(52),, WUHGDELS] (31)

The statistical factof takes into consideration identical particles in initiadtst F'[f;] being Bose-Einstein and Fermi-
Dirac distribution functions [18]. Because of Landau-hitg condition, some constrains can be addegltr, p) so that

|¢s| < 1[18]. Furthermore, a particular solution conserving Landl#fshitz condition was proposed; = Afar—bEb ¥
[18]. Then, bulk and shear viscosity reads

¢ = qf 1B Z / K= (9 _ 5oy [@ CEY j} frARE (32)

In relaxation time approximation, the phase space digidha of quarks and antiquarks can be replaced by theiribguil
rium ones;f = f°? + 0 f, whered f is allowed to be arbitrary infinitesimal, while the collisiintegral can be given as

C; = ¢ /74 [18]. Also, the particular solutionﬁ?alr andCJEJarare given as [18],

5ov) 'p' o pych (33)

2
ar
A= 2L {%—cﬁEé,f], (34)
par _ Ty
Fo T 2TE; (35)

The bulk and shear viscosities can be reexpressed (for Keeodaimplicity, we give the expressions in local rest-feam
of the fluid),

qr|B dk Tr P
(T, p,eB) = QTZ' /| @—t0) = [E— g3 |7 py(rpneB), (36)
B,f
B dk 4
W eB) = 30 L o) g 15T B (37

The distribution functiorff is very similar to the equilibrium phase-space distribafienction, Eq. (6). Thus, we merely
have to replace the dispersion relatip by the modified oné’s f, Eq. (10).

VISCOSITY FROM GREEN-KUBO CORRELATION

In order to derive Egs. (18) and (19) from Green-Kubo forsraliboth bulk and shear viscosities are given in Lehmann
spectral representation of the two-point correlation fioms as the components of the energy-momentum tensorasuch

[15]
¢\ . 1 LA (w, |P|)
(n)‘w%m%%w(i A, 1) (38)
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whereA, andA,, are spectral functions [15]

Acterlpl) = [ dte e (P(@). PO, (39)

Ay lpl) = [t e ([x(w), 70 ) (40)
with

P) = —3Ti@) - AT (), (41)

T (x) = TY(z) - %51'-@,5(1:), (42)

and([- - -]) donates an appropriate thermal average.

Details about the deriving shear viscosity shall be presk(tulk viscosity is very similar). We prove both Egs. (18)
and (19). The Matsubara propagators are used in calculdinghear viscosity. The energy-momentum tensor can be
expressed in terms of the Lagrangian density

TH = —gh'[ + 9’9, (43)

9(0,®)
For bosons, the viscous stress tensor is entirely detechiip¢he Lagrangian parts which are momentum dependent
1
Ty = (AH,,AP" - EAM,A’”) T, (44)

whereA*” = g*v —utuY. In linear response theory (LRT) know as diagrammatic apginpthe impact of the dissipative
forces on the energy-momentum tensor can be estimated.assismed that these forces are small compared to - the
typical energies of the system of interest - a strongly ad#ng system [46]. The linear response of the microscopic
viscous stress-tensar” to the dissipative forces enables us to relate the comeldtinction with the macroscopic

(shear) viscosity parameter [47]. By denoting the appedprthermal average of any two-point function(as ) and
giving it as2 x 2 matrix [47], then, the two point correlator of viscous strésnsor becomes

My(|pl) = i / diz €7 (11, ()7 (0)), (45)

wherea, b € [1, 2] represents the thermal indices of the matrix for-) and, is the time ordering with respect to a
contour in the complex time plane.

Q (p—k)

Fig. 4: A schematic one-loop diagram.

Also, the diagonal element can be related to the retardegoivd function of viscous stress-tensor. Thereldreompo-
nents corresponding to such functions [46]. The spectradtfan can be written as

Ay (w,|p]) = 2tanh (LU/TT) Im T1;; (w, p), (46)
with
I (pl) = i/df* N(p, k) D11(k) Di1(p — k), (47)

andDs1(p) is the scalar part of thel components of the quark-propagator matrix angb, k) containing the numerator
part of two propagators.
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e Thell components of the scalar part of the thermal propagatoreanfressed by using the formalism of real-time
thermal field theory (RFT) as

DU = g~ 20 B () Sr0008 — B 1) 49)

When replacing the momentum indices— & in Egs. (6) and (6), the Fermi-Dirac distribution functiomdathe
modified dispersion relatiorf¢ and Ez ¢, respectively) can be reexpressed in finite magnetic fietdRotyakov-
loop corrections.

e What remains in Eq. (47) stands for Fermions [46],
B = 22k k-(k —4(k-(k e +py 49
N(p.k) = —ko(ko +w)k- (k+p) —4(k- (k+p)+k’(k+p)°). (49)

Fig. 4 illustrates one-loop diagram of quark-meson loogsé¢h ando meson) which can be obtained from the two-point
correlation function of the viscous stress-tensor for thar constituents at the zero frequency and momentum It |
The dashed lines indicates that the quark propagators mefieite thermal width which can be derived from the quark
self-energy diagrams.

As an example, we estimate the shear viscosity, Eq. (38).blHeviscosity can be evaluated in a similar manner. In
PLSM in nonzero magnetic field and by assuming that, the ntagiredd is directed along-axisB = Bé., EqQ. (25), the
phase space should be modified according to the magnetlgsiat&q. (7). Therefore, The shear viscosity reads

. ImIly; (w, p)
im _
w—0t |p|—0t 10w

1 . |Qf|B /dk (=N) -
10 w0+ [p| o0+ m[ Z 0 )EB (R Ep ;(p+ k) 150

( c- /w N Ct/w >}
[w—Ep,¢(k) + Ep¢(p+k)]+il'  [w+ Ep (k) — Epf(p+ k)] + il

7 (50)

whereCF = xf; (k)T + fi(p+ k)T [Fw+ Ep,;(k)]. T is the thermal width (or collision rate) of the constituent
particles.I' y measures the dissipative coefficients such as the sheasitis
Similar to Ref. [46], we generalize Eqgs. (18) and (19),

lim EB_’f(p-l-k) = EByj'(k), (51)
p—0
As given in Ref. [47] and by expandifigin a Laurent series [47], the contribution to the shear \d8ggaan be given as

_ 1 ]¢lB dk (=No) + oo CF(w)
n = U Z/ 2 50”4E2()F{I +1%], with 17 = tim S (52)

HerelIT stands for an undefined quantity®&. Then, we can apply the I'Hospital’s rule [47],

T en0 W = %ff(kﬁ [1 + ff(k)ﬂ. 53)

The shear viscosity becomes

"= ﬁ'qu/ 2= 0.) 41152 (>> ZONIESOME (54)

whereNy = lim,, 50+ N (ko = £Ep ¢(k),k,p). Thus, Eqg. (49) becomes equivalentta4k*/3. By linking the
,|pl f

decay width to the relaxation time, the shear viscosity aadédfined in Green-Kubo correlation, Eq. (18), and the shear
viscosity reads

N 152T|q2f7|TBZ/dk 2~ dov) 4E]€27f( )ff( ) [1+ff(k):1- (55)
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