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Abstract: It appears now that Eintstein’s original proposal that quantum mechanics should not be considered 

as a complete description of physical reality was correct.  An argument put forth here for this conjecture is 

based on the recent publication that the unusual spin correlation of singlet state pair particles can be better 

understood using a more complete and complex nonlinear model than is contained in traditional quantum 

mechanics.  It is shown that similar arguments for understanding the spin correlation of entangled particles 

could have been utilized by Einstein in his original EPR publication in order to exonerate his proposal that the 

quantum mechanical description of physical reality is not complete.  Although the original EPR publication fell 

short of presenting a convincing argument that there is evidence for a deeper level of reality than is found in the 

quantum mechanical wave function description, it is proposed here that their intent was correct.  First, the 

original EPR argument associated with non-commuting position and momentum operators, as well as the 

equivalent Bohm argument associated with non-commuting orthogonal spin operators, are reviewed.  However, 

with the advent of the Bell inequality argument, associated with general spin measurements of two separated 

singlet state pair particles, the discussion of a deeper level of local quantum reality was side-tracked due to the 

general consensus that a nonlocal spin correlation was responsible for the unusual spin measurement results.  

Finally, with consideration of the recent publication that the spin correlation results can be explained using a 

more complex spin model, it is proposed that Einstein was correct all along, since there is finally evidence that 

the quantum mechanical wave function description of reality is not complete. 

Keywords: EPR Publication, Bohm Spin Correlation, Bell Inequality, Quantum Foundations, Deterministic 

Chaos. 

 
1. INTRODUCTION 

It has recently been published that it may be possible to understand the unusual quantum mechanical 

spin correlation of singlet state pair particles in a similar fashion that one understands classical 

deterministic chaos found in nonlinear dissipative systems [1].  With this in mind, the original EPR 

publication by Einstein [2] is revisited in order to exonerate the proposal that the quantum mechanical 

description of reality is not complete.  Unfortunately the original EPR publication fell short of 

presenting a convincing argument that there is evidence for a deeper level of reality than is found in 

the quantum mechanical wave function description; however, it will be shown in the following that 

their intent to demonstrate the incompleteness of quantum mechanics was profound. 

In section 2, the shortcomings of the original EPR argument will be addressed, which is associated 

with the proposal that there is a simultaneous reality of the momentum and the position of two 

separated but precisely anti-correlated particles.  Here, the reader will be reminded that in quantum 

systems, where the momentum operator, p̂ , and the canonically conjugate position operator, q̂ , do not 

commute, simultaneous measurements of both non-commuting variables is not possible.  In section 3, 

the equivalent shortcomings of the Bohm correlated spin measurement proposal [3] will be addressed, 

which explores the simultaneous reality of two orthogonal spin values of two separated but precisely 

anti-correlated singlet state particles.  Again, the reader will be reminded that in quantum systems, 

where the z  component of the spin operator, ˆ
z , and the orthogonal x  component of the spin 

operator, ˆ
x , do not commute, simultaneous measurements of both non-commuting variables is not 

possible.  In section 4, the generalization of the EPR/Bohm spin correlation analysis of two separated 

singlet state particles in arbitrary spin measurement directions will be addressed, which was originally 
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used in the Bell inequality argument [4]. Here, the reader will be reminded that the unusual 

correlation between spin measurements of the two separated singlet state particles led much of the 

physics community to assume that there was a nonlocal process involved which led to thespin 

correlation results [5,6]. In section 5, an alternative understanding of the spin correlation results will 

be addressed [1], which relies on the use of a more complex local spin model than is used in 

traditional quantum mechanics. Here, the reader will be reminded of similar non-predictable emergent 

behavior which is found in classical nonlinear dissipative systems which exhibit deterministic chaos 

[7]. In section 6, a discussion will be given of the application of more complex quantum models to 

address the EPR argument, which go beyond traditional linear operator theory that have previously 

incorporated the mystical notion of a wave function collapse. Finally, in section 7, conclusions will be 

given which are associated with vindication of Einstein’s proposal that quantum mechanics should not 

be considered as a complete description of physical reality. 

2. BRIEF REVIEW OF THE EPR ARGUMENT 

The EPR argument [2], put forth in 1935, essentially addressed a two-particle wave function,

 1 2, yy , which was constructed using an infinite superposition (a Fourier integral representation) 

of two different orthonormal basis eigenfunctions of non-commuting operators (the momentum and 

the position operators).It is assumed that two identical particles travel in opposite directions, with 

opposite momenta, away from each other along the y  axis of separation, as shown in Fig. 1.  The 

two-particle wave function was constructed to represent the entangled position ( 1y  for the first 

particle, labelled as 1, and 2y  for the second particle, labelled as 2) and the canonically conjugate 

momenta ( 1p  for the first particle, and 2p  for the second particle) of two precisely anti-correlated 

particles, which separate in opposite directions, where classically the separation distance is

1 2y y y   , with opposite momenta, where 2 1p p  , due to an initial impulsive force which 

occurred when both particles, each with zero momenta, 1 2 0p p  , were at the origin, 1 2 0y y  .  

The objective of the argument was to consider measurements on the first particle, without disturbing 

the second particle, to show that two non-commuting elements of reality for the second particle (the 

momentum and the position) could be known precisely and simultaneously.  However, as this is not 

possible for a quantum mechanical wave function description of reality, which must satisfy the 

uncertainty principle, it was then concluded that the wave function description of quantum mechanics 

is not complete, as it would need to include this additional information about these precise elements of 

reality for two non-commuting operator measurements. 

 

 

 

 

 

Fig1. EPR model of two particles traveling in opposite directions. 

To demonstrate the details of this argument, it is useful to recall that free particle momentum 

eigenfunctions,  
1

2

iky

k y e


 , can be labelled using the wavenumber index, k , where the 

momentum eigenvalue is p k  , the normalized Planck constant (the Planck constant, h , divided by 

2 ) is / 2h  , and the momentum operator with respect to the y  coordinate is ˆ /p i y   

.Also note that this is a solution of the free particle Schrodinger  equation for a particle of mass m , 

where the energy eigenvalue is  
2

/ 2E k m  , and the particle has equal probability of being 

anywhere along the y  axis.Using these momentum eigenfunctions, it is useful to combine an 

eigenfunction for the first particle,  1k y , with momentum of p , with an eigenfunction of the 

2 1 
0y   

 2 yy    
1 yy   

2 pp    
1 pp   

1 2yy y    
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second particle,  2k y , with an opposite momentum of p , using a direct product, as 

   1 2k ky y  .  Here, the first and second particle momentum operators are 1 1
ˆ /p i y    and 

2 2
ˆ /p i y    , where the eigenvalue problems are      1 1 1

ˆ
k kp y k y    and 

      2 2 2
ˆ

k kp y k y    .  However, in order to incorporate a spatial separation, 1 2y y y   , 

between the particles, the appropriate two-particle wave function (using the Dirac delta function) is 

     1 2

1 2 1 2

1
,

2

ik y y y
y y y y y dke 




 



      .                    (1) 

Ultimately, it is important to note that this construction of the two-particle wavefunction can be 

written as an infinite spectrum (or Fourier integral representation) of momentum eigenstates of the 

first particle,  1k y , with momentum eigenvalue 1p k p  , where 

     1 2 2 1, k ky y dk y y  




    ,                      (2) 

which incorporates the spectral coefficient of the first particle momentum eigenfunction of 

     2

2 2

1

2

ik y y ik y

k ky e e y 


   

  ,                     (3) 

which is also a momentum eigenfunction of the second particle,  2k y , with eigenvalue of 

2 1p k p p      .  Consequently, the two-particle wavefunction,  1 2, yy , is the desired infinite 

linear superposition of momentum eigenstates of the first particle with momentum 1p p , and 

momentum eigenstates of the second particle, with opposite momentum of 2 1p p p    . 

At this point in the analysis it should be clear that if the momentum of the first particle is measured, 

resulting in the momentum value 1p p , then the infinite linear superposition has effectively 

collapsed after the measurement has occurred to the reduced wave functionresult, where 

         
1 1 2 2 1 2 1, ik y

after p k k k ky y y y e y y     

  .                    (4) 

It should be noted that this resultant wave function is a momentum eigenstate of the first particle, with 

momentum 1p p , as well as being a momentum eigenstate of the second particle, with momentum 

2 1p p p    .  This result allows for the notion that one can predict the precise momentum of the 

second particle (without disturbing the second particle) by measuring the momentum of the first 

particle, which are precisely anti-correlated. 

Finally, in order to finish the EPR argument, it is useful to rewrite the two-particle wave function 

using an alternate position eigenstate basis expansion, where the original two-particle wave function, 

equation (1), was represented as a momentum eigenfunction expansion of the first particle (over all 

possible momentum values of p k  ), equation (2).  Instead, consider the position eigenfunction, 

 1y y  , expansion of the first particle (over all possible position values of y ).  Note that the 

position operator of the first particle, 
1ŷ , leads to the eigenvalue problem, where 

   1 1 1ŷ y y y y y    , with the position eigenvalue of 
1y y .  Consequently, the two-particle 

wave function can equivalently be expressed as 

       1 2 1 2 2 1,y y y y y dy y y y y y   




            .                   (5) 

The conclusion is that the spectral coefficient of the first particle position eigenfunction,  1y y  , is

 2y y y    , which is also an eigenfunction of the second particle position operator, 
2ŷ , where 
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     2 2 2ŷ y y y y y y y y          , with position eigenvalue of 
2y y y  .  Consequently, 

once again, this is the desired construct for the two-particle wave function, as it is an infinite linear 

superposition of position eigenstates of the first particle with position 
1y y , and corresponding 

position eigenstates of the second particle with a position of
2y y y  . 

In a similar fashion as the collapse of the wave function upon momentum measurement, if instead the 

position measurement of the first particle occurs, with a position value of 
1y y , then the infinite 

linear superposition has effectively collapsed after measurement has occurred to the reduced wave 

function result, where 

     
1 1 2 2 1,after y y y y y y y y       .                     (6) 

It should be noted that the resultant wave function is an eigenfunction of position of the first particle, 

with position valueof 
1y y , as well as being an eigenfunction of position of the second particle, with 

position value of 
2y y y  .  Once again, this is essentially the notion that one can predict the 

precise position of the second particle (without disturbing the second particle) by measuring the 

position of the first particle, which are precisely correlated as shown.  Also, as a simplification of this 

analysis, if the separation is 2y y  , then the second particle position is precisely the opposite of the 

first particle position, where 
2y y  , and the simplified collapsed wave function is 

     
1 1 2 2 1,after y y y y y y y     .                      (7) 

Ultimately, the proposed conclusion of the EPR analysis is that it appears that by considering two 

different measurements on the first particle (the momentum and the position), then the corresponding 

values of the second particle (which are precisely anti-correlated with the measurements of the first 

particle) appear to be precise and simultaneous aspects of reality.  However, since the momentum and 

position values are eigenvalues of two non-commuting operators, where the commutation relation is 

 ˆ ˆ ˆ ˆ ˆ ˆ,y p yp py i    , and the quantum mechanical wave function description is not allowed to 

predict simultaneously such non-commuting results (due to the uncertainty principle which is 

associated with the non-commutation relation), it was concluded that the wave function description is 

not complete, since a more complete model should include such knowledge of the two eigenvalues of 

momentum and position.  In retrospect, the error with the EPR logic is that, as with all quantum 

systems, if a momentum measurement of the second particle was actually used to verify the prediction 

of the momentum (which was determined using the first particle momentum), then the position 

realization of the second particle is immediately destroyed, which is then no longer correlated with the 

first particle position.  Of course, a similar but inverseproblem could also be approached by measuring 

the position of the second particle (which was predicted from the position of the first particle), then 

the momentum realization of the second particle is immediately destroyed, which is then no longer 

correlated with the first particle momentum.  Consequently, as always in quantum systems, one 

cannot know simultaneous eigenvalues of non-commuting operators (such as momentum and 

position). 

As a preview of the discussion to be provided in section 6, it is useful to consider that the EPR 

premise pertaining to their criteria for elements of physical reality is simply incorrect for quantum 

systems, which have an inherent complexity which goes beyond classical systems. Simply put, 

Einstein’s statement was that: “If, without in any way disturbing a system, we can predict with 

certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an 

element of physical reality corresponding to this physical quantity.” However, as is shown above, 

even though the momentum and the position of the second particle could have been precisely 

predicted in advance of measurements made on the second particle, by instead measuring the first 

particle (due to the precise anti-correlation), in quantum systems, as a result of the inherent 

complexity (which will be explained in section 6), it is not true that these physical quantities are 

actually simultaneous elements of physical reality until the measurements are made on the quantum 

system. This problem of assigning elements of physical reality will be described later in analogy to 

predicting values of emergent reality associated with nonlinear systems which exhibit deterministic 

chaos (which are in practice actually non-predictable values).  Consequently, since the EPR criteria 

for elements of reality for complex quantum systems is not valid, the EPR argument claiming that the 
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quantum mechanical wave function is not complete was not sound; however, as pointed out in section 

7, the intent of the EPR argument was sound, and due to the need to describe more completely the 

complexity of quantum systems, quantum mechanics in general will be described as ultimately not 

being complete. 

3. BRIEF REVIEW OF THE BOHM SPIN PROPOSAL 

In analogy to the EPR analysis, Bohm [3] put forth in 1951 the concept of analyzing spin 

measurements on a pair of spin one-half particles which formed a spin zero singlet two-particle state.  

The two particles were assumed to separate without changing the combined spin zero state, where 

spin measurements of the separate particles were done along potentially two different orthogonal 

measurement directions. In a similar fashion to the EPR analysis, the realization of the spin 

measurements of the separate particles along two non-commuting spin operator directions was 

considered. For example, consider two spin one-half particles (labelled as 1 and 2) which are 

separated away from each other along the y  axis, where spin measurements of each separate particle 

can be performed in two orthogonal directions, along the positive z  axis and the positive x  axis 

directions, which are represented by the unit vectors ẑ  and x̂ , as shown in Fig. 2. 

 

 

 

 

 

 

Fig2. Bohm model of a spin zerosinglet state of two separate particles. 

The general singlet state wave function can be constructed usingspin up ( ) and spin down (  ) basis 

functions, 
1

ˆa , along anyunit vector â direction, for the first (labeled as 1) particle, and a similar 

basis for the second (labeled as 2) particle, where the singlet two-particle state is 

 
1 2 1 2

ˆ ˆ ˆ ˆ / 2      a a a a .                      (8) 

As a specific example of such a singlet spin state, it is common to use an orthonormal basis along the 

ẑ  direction, with a two component matrix analysis, where the spin up and down states are labelled as 

1
ˆ

0
z z 

 
     

 
z and 

0
ˆ

1
z z 

 
     

 
z  , respectively, and where 

ˆ ˆ ˆ ˆ ˆ ˆ1, 1, 0        z z z z z z .                     (9) 

Consequently, the entangled two-particle spin state is 

 1 2 1 2 / 2z z z z      .                     (10) 

Using an equivalent complete orthonormal basis along the x̂  direction, where 

11
ˆ

12
x x 

 
     

 
x and 

11
ˆ

12
x x 

 
     

 
x , the entangled two-particle spin state is 

 1 2 1 2 / 2x x x x      .                     (11) 

The general spin vector operator, ˆ ˆ
2

S

 , can be normalized using the Pauli spin matrices, which 

have spin eigenvalues of 1 , instead of / 2 , where the , ,x y z  component matrix forms are 

2 1 

 
2y  

1y  

1 2yy y    

x̂  x̂  

ŷ  ŷ  

ẑ  ẑ  0y   
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0 1 0 1 1 0
ˆ ˆ ˆ, ,

1 0 1 0 0 1
x y zi  

     
       

     
.                   (12) 

Note that the eigenvalue problems for the ˆ
z  operator are  ˆ 1z z z    and  ˆ 1z z z    , and the 

eigenvalue problems for the ˆ
x  operator are  ˆ 1x x x     and  ˆ 1x x x    , where the +1 and -1 

spin eigenvalues should be noted. 

In a similar fashion as the EPR analysis, the two-particle singlet spin statewill be employed, using two 

different bases, equations (10) and (11), which are associated with two non-commuting spin 

operators, where the commutation relation is  ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2z x z x x z yi         , in order to consider 

precise and simultaneous orthogonal spin component realities (with one along ẑ  and the other along 

x̂ ) for the two separated particles.  In order to explore this conjecture, it is first useful to demonstrate 

that the singlet spin zero state leads to spin measurements of the two entangled particles which are 

precisely anti-correlated.  Using the spin operators, equation (12), applied to the ẑ  basis spin states      

(
z and 

z ), the following useful spin operator results can be obtained, where 

ˆ ˆ ˆ ˆ, , ,x z z x z z y z z y z zi i                .                  (13) 

With these tools, the eigenvalue problems for the squared vector and the ẑ  component of the 

combined two-particle spin operator,  
22 2 2

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2            and 

1 2
ˆ ˆ ˆ

z z z    , for the 

singlet state,   in equation (10), provide zero total squared and ẑ  component normalized spin 

eigenvalues ( 2 0z   ), where 
2ˆ 0    and ˆ 0z   .  In fact, the two-particle total vector 

spin squared and the totalspin component along any â  direction is zero for the general singlet state 

wave function, given in equation (8), which is of course also true for the x̂ component basis, in 

equation (11), where 2 0x   .  The utility of this general combined two-particle spin result for the 

singlet state is that a precise prediction for the spin along any direction of the second particle can be 

determined in advance by measuring the spin of the first particle along the same direction (without 

disturbing the second particle), as the spin components are precisely anti-correlated. 

Finally, using a similar discussion as was done for the EPR analysis of two entangled particles, 

associated with the momentum and position measurements of two non-commuting operators ( p̂ and ŷ

), the singlet state spin zero pair of particles can be analyzed in terms of potentially performing spin 

measurements along two different orthogonal directions (the ẑ  and x̂  directions), associated with two 

non-commuting spin operators ( ˆ
z  and ˆ

x ).  The argument then proceeds by considering a ẑ  

component spin measurement of the first particle, and if the result is spin up, the initial two-particle 

state in the ẑ  basis, equation (10), effectively collapses to 

1
1 2

z
z zafter

   ,                      (14) 

which is not only a spin up eigenfunction for the first particle along the ẑ  direction, where 

 1 1 1
ˆ 1z z z    , with eigenvalue 

1 1z   , it is also a spin down eigenfunction for the second 

particlealong the ẑ  direction, where  2 2 2
ˆ 1z z z    , with eigenvalue 

2 1z   .  Of course, if the 

spin measurement result for the first particle was instead spin down, then the singlet state collapses 

such that the spin result for the second particle would be spin up, where the anti-correlated 

eigenvalues would be 
1 1z    and 2 1z   .  However, to finish the argument, it is useful to 

alternatively consider an x̂  component spin measurement of the first particle, and if the result is spin 

up, the initial two-particle state in the x̂  basis, equation (11), effectively collapses to 

1
1 2

x
x xafter

   ,                      (15) 

which is not only a spin up eigenfunction for the first particle along the x̂  direction, where 

 1 1 1
ˆ 1x x x    , with eigenvalue 

1 1x   , it is also a spin down eigenfunction for the second 
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particle along the x̂  direction , where  2 2 2
ˆ 1x x x    , with eigenvalue 

2 1x   .  Of course, if the 

spin measurement result for the first particle was instead spin down, then the singlet state collapses 

such that the spin result for the second particle would be spin up, where the anti-correlated 

eigenvalues would be 
1 1x    and 

2 1x   . 

As in the EPR argument, since the singlet spin zero state of two entangled particles can be equally 

represented using two different spin bases, associated with two non-commuting spin operators, ˆ
z  

and ˆ
x , it would appear that a precise prediction of the second particle spin in the ẑ  direction could 

be achieved by measuring the ẑ  component spin of the first particle (without disturbing the second 

particle), or instead a precise prediction of the second particle spin in the x̂  direction could be 

achieved by measuring the x̂  component spin of the first particle (without disturbing the second 

particle).  However, as in the EPR argument, since a quantum mechanical spin state cannot allow for 

simultaneous eigenvalues of two non-commuting operators ( ˆ
z  and ˆ

x ), and it appears that the 

precise spin information of the second particle is objectively real for these two orthogonal spin values 

(as described above), then the quantum mechanical wave function appears not to be complete, as it 

should have this extra spin information encoded in its description of reality. 

However, just as with the EPR argument, the error with this singlet spin state precise anti-correlation 

logic is that, as with all quantum systems, if a spin measurement of the second particle was actually 

used to verify the prediction of the spin along the ẑ  direction (which was determined using the first 

particle spin measurement), then the spin realization along the x̂  direction of the second particle is 

immediately destroyed, which is then no longer correlated with the first particle spin in the x̂  

direction.  Of course, a similar but inverse problem could also be approached by measuring the spin of 

the second particle in the x̂  direction (which was predicted from the spinmeasurement of the first 

particle), then the spin realization of the second particle in the ẑ  direction is immediately destroyed, 

which is then no longer correlated with the first particle spin in the ẑ  direction.  Consequently, as 

always in quantum systems, one cannot know simultaneous eigenvalues of non-commuting operators 

(such as two orthogonal components of spin). 

As a final comment on the conclusions associated with the precise anti-correlation between spin 

measurements for a singlet state pair of particles, and even though the spin state concept was devised 

by Bohm to further explore the EPR argument, it was reasonably clear from his analysis [see 

reference 3, specifically in section 22.18] that he did not agree with the EPR argument of assuming 

that spin values are objectively real prior to measurement, as he described them as potentialities, to be 

determined by measurement.  In fact, this should be clear from the following quote of Bohm’s, “Thus, 

for a given atom, no component of the spin of a given variable exists with a precisely defined value, 

until interaction with a suitable system, such as a measuring apparatus, has taken place.”  

Furthermore, Bohm proceeds to claim that quantum theory is inconsistent with the existence of hidden 

variables, which has been historically first associated with the EPR analysis.  To support Bohm’s 

stance on the inconsistency of hidden variables, it is useful to consider the following quote, 

“Moreover, the present form of quantum theory implies that the world cannot be put into a one-to-one 

correspondence with any conceivable kind of precisely defined mathematical quantities, and that a 

complete theory will always require concepts that are more general than that of analysis into precisely 

defined elements.”  It should be noted that this conjecture of Bohm’s was profound, as it was not 

clearly shown until the advent of the Bell inequality analysis that a local hidden variable theory of 

spin cannot be constructed (as shown in section 4).  Furthermore, as discussed in section 5, the infinite 

complexity of spin can be shown to be consistent with an emergent reality that results upon 

measurement, in a similar fashion as the deterministic chaos exhibited by classical nonlinear 

dissipative systems.  It is also interesting to note that this too seems to be predicted by Bohm, 

associated with another profound quote of his, “We may probably expect that even the more general 

types of concepts provided by the present quantum theory will also ultimately be found to provide 

only a partial reflection of the infinitely complex and subtle structure of the world.” 

4. BRIEF REVIEW OF THE BELL INEQUALITY ANALYSIS 

With the objective of exploring the possibility of a local hidden variable theory of spin, Bell [4] put 

forth in 1964 a generalization of the spin correlation experiments that had originally been suggested 
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by Bohm (as described in section 3).The proposal was for two spin ½ particles, which formed an 

original singlet pair state, as given in equation (8), to separate to a sufficient distance away from each 

other (without disturbing the spin structure of each particle), where simultaneous spin measurements 

are then made on the particles (beyond the light cone, so that there would be no way, within the speed 

of light limit, for the separate particle measurements to effect each other).  Specifically, as shown in 

Fig. 3, the first particle is measured in the â direction, while the second particle is measured in the b̂

direction, where the angle of separation,  , is associated with the dot product of the two unit vector 

directions, as  ˆˆ cos  a b .With the use of standard quantum mechanical theory, the expectation 

value for the product of the two spin measurements can easily be derived (as shown below).  Denoting 

the normalized (to 1 ) spin measurement of the first particle as A , and the normalized spin 

measurement of the second particle as B , with the use of appropriate vector spin operators for the first 

particle as 
1̂ , and for the second particle as

2̂ , the quantum mechanical result for the spin product 

expectation value,  QMP  , is  

      1 2
ˆ ˆˆ ˆˆ ˆ cosQMP AB         a b a b    .                 (16) 

 

 

 

 

 

 

 

 

 

Fig3. Bell model of the spin product expectation value analysis of singlet state particles. 

The result of the Bell analysis (as shown below) was that a local hidden variable theory for the spin 

product expectation value cannot be constructed to agree with the quantum mechanical result, 

equation (16).  However, unfortunately the conclusion of the Bell inequality analysis, which was 

based on a local spin model, led much of the physics community to conclude that a nonlocal process 

between the separated particles must be responsible for the unusual spin correlation shown in equation 

(16).  Nevertheless, recent analysis of the spin correlation [1], put forth in 2015, has shown that 

another explanation of the result can be made which utilizes a local mechanism, which would have 

been much more pleasing to Einstein than the proposed nonlocal approach.  Furthermore, in order to 

achieve the recent alternate understanding of the spin correlation between separated spin ½ particles it 

was necessary to draw an analogy to the emergent behavior found in classical nonlinear dissipative 

systems which exhibit deterministic chaos.  Here, it should be noted that, not only was Einstein not 

privy during the 1930s to the computational simulations that are needed for studies of chaotic 

systems, but also the more recent computational simulation technologythat was needed to understand 

deterministic chaos, which began during the 1970s and 1980s,was not available to Bell when his spin 

correlation analysis was first proposed.  Consequently, it is not surprising that the physics community 

had been led down the unfortunate path of exploring a nonlocal construct to explain the spin 

correlation results since the advent of the Bell analysis. 

To provide a brief overview of the spin correlation analysis, it is first useful to review the standard 

quantum mechanical approach to the problem.  For simplicity, although this approach is quite general, 

it is simplest to start with the entangled two-particle singlet spin state in the ẑ  basis, equation (10), 

2 1 

 
2y  

1y  

1 2yy y    

x̂  x̂  

ŷ  ŷ  

0y   

ẑ  ẑ  
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â  â  

b̂  b̂  
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with the choice of measurement directions being ˆ ˆa z  and ˆ ˆ ˆsin cos  b x z , so that the spin 

product expectation value can be calculated as 

       1 2 1 2 2
ˆˆ ˆ ˆ ˆ ˆ ˆsin cosQM z x zP              a b  .                (17) 

Using the singlet state,  1 2 1 2 / 2z z z z      , the orthonormal inner products that occur after 

the 
1

ˆ
z operator is applied to the particle 1 cross states, using equation (9), and the spin operator 

identities, equation (13), applied to the particle 2 states, with the needed expectation value results,

2 2 2
ˆ 0z x z    , 2 2 2

ˆ 0z x z    ,
2 2 2

ˆ 1z z z     , and 
2 2 2

ˆ 1z z z    , provide the 

quantum mechanically derived spin product expectation valuein agreement with equation (16), as 

  2 2 2 2 2 2

2 2 2 2 2 2

ˆ ˆsin / 2 cos / 2

ˆ ˆsin / 2 cos / 2 cos

QM z x z z z z

z x z z z z

P         

        

 

   
.                (18) 

Here, it is important to note that this expectation value result, when applied to spin measurements in 

the same direction, where ˆˆ a b so that 0  , as was shown in section 3 for spin measurements of 

both separated particles in either the ẑ or the x̂  directions, shows that there is a precise anti-correlation 

between spin results, where  0 1QMP     .  In fact, this was the result that was the original impetus 

for the EPR/Bohm precise anti-correlation analysis between separated particles, which led to the 

discussion of the possible existence of non-commuting operator associated objective realities, which 

were assumed to exist prior to the verifying measurements actually taking place.  Furthermore, it will 

be shown below that the most interesting aspect of the spin correlation result, equation (16), is for the 

case that the spin measurement directions are not the same, that is for a general separation angle, 

0  , between measurement directions.  In this case, the Bell inequality analysis will demonstrate 

that a local hidden variable theory for the spin product expectation value cannot be constructed to 

agree with quantum mechanics, given by equation (16). 

The next step in the demonstration that the quantum mechanically derived correlation between 

separated spin measurements of singlet state particles is quite unusual, given by equation (16), is 

achieved by considering the precise local hidden variable model of spin proposed in the Bell analysis 

[4].  Specifically, for a hidden variable parameter value of , it is assumed that the hidden variable 

spin of the first and second particles were precisely given by  ˆ,A a and  ˆ ,B b , when the 

measurement directions are â  and b̂ , respectively.  To be consistent with quantum mechanics, these 

functions can only take on plus or minus one values, as 

   ˆˆ, 1, , 1A B    a b .                     (19) 

In order to compare the quantum mechanically derived expectation value of the product of the spin 

measurements of the two particles with a hidden variable prediction, a general non-negative 

probability density,    , with   0   , for occurrence of the hidden variable,  , was proposed, 

which has the usual integrated constraint of being unity, where 

  1d   .                       (20) 

Consequently, the hidden variable proposal for the spin product expectation value was given by 

       ˆ ˆˆ ˆ, , ,P d A B    a b a b .                    (21) 

However, since there is a precise anti-correlation between spin values for measurement directions 

being the same, ˆˆ a b , where 

   ˆ ˆ, ,B A  b b ,                      (22) 

thehidden variable theory spin product expectation value, equation (21), can also be written as 
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       ˆ ˆˆ ˆ, , ,P d A A    a b a b .                    (23) 

The Bell inequality analysis proceeded by considering three general unit vector measurement 

directions, ˆˆ ˆ, ,a b c , and with the use of equation (23), a useful equation results, where 

             ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,P P d A A A A         
 a b a c a b a c .                (24) 

In addition, since  
2

ˆ , 1A   
 

b , this equation can also be written as 

             ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , 1 , , , ,P P d A A A A           
   a b a c b c a b .                (25) 

By taking the absolute value of both sides of this expression, and using the maximum value of the last 

term on the right hand side, where    
max

ˆˆ, , 1A A   
 

a b , the needed inequality results,

         ˆ ˆˆ ˆ ˆ ˆ, , 1 , ,P P d A A      
 a b a c b c .                  (26) 

Ultimately, using equations (20) and (23), the well-known Bell inequality results, where 

     ˆ ˆˆ ˆ ˆ ˆ1 , , ,P P P  b c a b a c .                     (27) 

The key result of the Bell analysis is that the inequality, equation (27), is violated if the quantum 

mechanically derived spin product expectation values, equation (16), are used in the expression, in 

place of the hidden variable proposed spin product expectation values, equation (21).  To verify this 

result it is simplest to show an example of the violation.  For example, if the three unit vector 

measurement directions, ˆˆ ˆ, ,a b c , are in a plane and are each successively separated by sixty degrees, 

and the quantum mechanical results, equation (16), are used in equation (27), where 

           0 0 0ˆ ˆˆ ˆ ˆ ˆ, cos 60 0.5, , cos 120 0.5, , cos 60 0.5P P P       a b a c b c ,              (28) 

then the Bell inequality, equation (27), fails since the inequality is not correct, as shown here, 

     ˆ ˆˆ ˆ ˆ ˆ1 , , , 0.5 1.0P P P    b c a b a c .                   (29) 

The profound conclusion of this analysis is that the local hidden variable model of the spin product 

expectation value, equation (21), cannot be constructed to agree with quantum mechanics, equation 

(16), where 

     ˆ ˆˆ ˆ, cos QMP P      a b a b .                    (30) 

It is important to note that the bizarre conclusion of the original Bell inequality publication[4] was 

that, in order for such a local hidden variable spin construct, equation (21), to agree with quantum 

mechanics, equation (16), it was assumed that there must be a mechanism whereby the setting of one 

spin measuring device can influence the reading on the other device, such that the signal involved 

must propagate instantaneously (which is a nonlocal construct proposition).  However, as pointed out 

in a recent publicationwhich describes an alternate and local understanding of the correlation between 

singlet state particles [1], it should be emphasized that this conclusion, equation (30), does not 

indicate that quantum mechanical spin must be inherently nonlocal, which would have pleased 

Einstein, as he would have never wanted to give up locality, simply to force a hidden variable theory 

to agree with quantum mechanical reality. Furthermore, in contrast to the unusual well-known 

conclusion of the Bell analysis, the conclusion should have simply been stated that the proposed 

hidden variable model of the spin product expectation value, equation (21), cannot agree with 

quantum mechanics unless the model includes a nonlocal construct. Consequently, as the use of a 

nonlocal spin construct is unacceptable (to Einstein as well as to most sound scientists), it should be 

clear that a simplistic hidden variable theory of spin, which prescribes precise spin values in advance 

of measurement, as proposed in equation (19), does not represent a valid candidate spin model of 

reality.  Here, it should be noted that this problem of proposing a precise spin model is in direct 
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analogy to the original failed assumption in the EPR publication which indicated that Einstein had 

assumed that there should be elements of physical reality (the momentum and position measured 

values, which in this case are analogous to the measured values of spin), which correspond to physical 

quantities (the predicted momentum and position values, which in this case are analogous tothe 

precise spin values proposed by the hidden variable model).  Nevertheless, even though Einstein’s 

argument was not completely sound, as it was based on the assumption of precise elements of 

physical reality, Einstein’s proposal that quantum mechanics is not complete will be vindicated in 

sections 6 and 7, after a brief review of the successful (as it agrees with quantum mechanics),alternate, 

andlocal understanding of the spin correlation between singlet state particles is presented in section 5. 

5. ALTERNATIVE UNDERSTANDING OF SPIN CORRELATION 

It is well known that quantum mechanical experiments (using spin ½ particles as well as photons) 

clearly support the quantum mechanically derived correlation between singlet state pair particles, 

given by equation (16), which was most definitively verified by the Aspect experiments [8], 

performed in 1982, that were inconsistent with the Bell inequality, but supportive of quantum 

mechanics.  However, it is unfortunate that the most common explanation of the unusual spin 

correlation between singlet state separated particlesis to assume that there is a nonlocal interaction 

between the particles [9-11].  Nevertheless, recently,an alternate explanation of the spin correlation 

was published [1] which is appealing since it is based on a local theory.  Here, it should be noted that 

it is not surprising that this alternate understanding of the spin correlation was not discovered until 

recently, as the analysis is based on knowledge that is associated with computational simulations 

which demonstrate deterministic chaos found in classical nonlinear dissipative systems [12-15].  

Clearly, not only would Einstein have no knowledge of the unpredictable aspects of deterministic 

chaos in the 1930s, but Bell also would have been in the dark on such concepts in the 1960s, as the 

detailed numerical simulations of chaos did not begin in earnest until at least the 1970s and 1980s. 

Given the advantage and experience that a wide variety of scientists and engineers have gained 

through the exploration of deterministic chaos models, numerous examples of the unpredictable 

aspects of nature, which are quite pervasive, have been recently explored through detailed 

computational simulations. Such studies include demonstrations of extreme sensitivity to initial 

conditions found in nonlinear systems that are as simple as a driven damped pendulum, or as complex 

as computational fluid dynamics simulations applied to weather prediction, or kinetic theory 

simulations of plasma turbulence.  However, as quantum systems are typically analyzed using the 

linear Schrodinger  equation and linear operator theory, it is not common to apply deterministic chaos 

concepts to the quantum realm of nature.  Nevertheless, as discussed in section 6, this is precisely the 

new area of research which may lead to far superior understanding and interpretation of quantum 

phenomena.  Thus, with this deterministic chaos knowledge base in mind, the following brief review 

of the recently proposed alternate explanation of the spin correlation between separated particles 

begins by considering the possibility that there could be an underlying infinitely complex aspect of 

spin which emerges upon measurement. Note that this approach of dealing with the measurement 

problem in quantum mechanics as an emergent behavior, which bypasses the need for a mystical 

wave function collapse, allows for a natural evolution of the quantum system towards the well-known 

(but unpredictable) eigenfunctions of linear theory (which allows for a direct connection to standard 

quantum theory results).  To begin the description of the alternate analysis of spin, and as clearly 

shown in section 4, it is important to note that it is not possible to construct a precise local hidden 

variable theory of spin for each particle, such as given by equation (19), which agrees with quantum 

mechanics.  However, this does not restrict a proposal for a local statistical model of the spin 

correlation between the two separated particles, which is designed to agree with quantum mechanics, 

where the spin product expectation value is given by equation (16), as shown below. 

In order to construct a specific model of the spin correlation between two separated particles it is 

useful to start with the knowledge of the well-known spin product expectation value dictated by 

quantum mechanics, being    cosQMP    , as shown in equation (16).  In addition, from this 

result, it is clear that the two spin measurements are:  1) highly anti-correlated, 1QMP  , for small 

separation angles, 0  ; 2) highly correlated, 1QMP  , for large separation angles,   ; and 3) 

completely uncorrelated, 0QMP  , for orthogonal separation angles, / 2  .With these statistical 
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concepts of the spin correlation structure for singlet state particles in mind, an alternate type of hidden 

variable theory for the spin correlation model is proposed; however, in contrast to the usual hidden 

variable theory that attempts to specify a precise spin structure for each separated particle, the 

following model simply represents the statistical concepts associated with the spin product of the two 

separated particles.  In addition, since the following spin correlation model for singlet state pair 

particles incorporates the notion that there could be an underlying infinitely complex aspect of spin, 

which emerges upon measurement, the phrase Infinite Complexity Hidden Variable (ICHV) theory is 

coined to represent this concept.  Although a similar notation will be used in the following, as was 

used for the review of the standard hidden variable theory, given in section 4, where the hidden 

variable parameter was introduced to represent a specific realization of spin, it is important to 

emphasize that the hidden variable parameter that is used here, , is not intended to represent a 

specific spin of each particle.  Furthermore, to help with understanding, and in order to make contact 

with the notion of the unpredictable and underlying infinitely complex emergent spin structure, one 

can think of the hidden variable parameter (used here) as representing an infinite variety of initial 

conditions, which lead to specific spin products of the two particles,
ICHVAB , which occur upon 

measurement.  The statistical aspect of the spin model will then be entirely embedded in the 

probability density function, 
ICHV , which is associated with a specific hidden variable parameter 

value, , as well as with the angle of separation, , between measurements. 

The specific spin model proposal includes a normalized spin product, given by  ICHVAB  , where  is 

a continuous hidden variable parameter value over the entire infinite domain, 

  ,                       (31) 

which have the needed 1  normalized spin product values, where 

  1ICHVAB    .                      (32) 

In addition to this spin product function, the spin model also includes an associated non-negative 

normalized probability density,  , 0ICHV    , for all separation angles of measurement, 0    , 

which is properly normalized as a unity infinite integral over the hidden variable, or 

 , 1ICHVd  




 .                      (33) 

The proposed ICHV spin product expectation value,  ICHVP  , is then given by 

     ,ICHV ICHV ICHVP d AB    




  .                    (34) 

Here, it should be noted that this expectation value construct appears similar to the original hidden 

variable theory approach, of equation (21); however, the significant difference here is that the 

probability density,  ,ICHV   , in equation (34), must be a function of the separation angle,  , as 

well as the hidden variable,  , and the spin product,  ICHVAB  , is only a function of the hidden 

variable,  , as it will take on only plus or minus one values, depending on the hidden variable 

realization parameter.  Furthermore, it should be emphasized that unlike the standard hidden variable 

theories, which utilize precise spin predictions for each hidden variable parameter value, the hidden 

variable parameter used here cannot provide precise spin predictions, as it is only connected 

statistically to the spin product through the probability density function. 

Finally, to complete the description of the specific statistical ICHV spin model proposal, let the spin 

product function be 

 
1, 0

1, 0
ICHVAB






   
 

   
,                     

(35) 

where the probability density function is 
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 
 

 

2

2

2

2

2
exp , 0

sin / 2

,

2
exp , 0

cos / 2

ICHV





  






           
      

 
    
       
     

.                 (36) 

Here, it should be noted that the choice of the probability density function, equation (36), for analytic 

simplicity, incorporates a Gaussian function structure, which can easily be integrated over the hidden 

variable.  However, it should be clear that other functional forms for the probability density function 

could be used if desired. 

In order to show that these choices for the spin product in combination with the probability density 

functions are consistent with the quantum mechanical predictions, it is necessary to check the 

probability density normalization as well as the spin product expectation value result.  First, it is clear 

that the probability density is properly normalized to one, where 

 
   

   

2 2
0

2 2

0

2 2

2 2
, exp exp

sin / 2 cos / 2

sin / 2 cos / 2 1

ICHVd d d
 

    
  

 

 

 

         
          

            

  

  
.              (37) 

Second, it is also clear that the spin product expectation value, using this ICHV model, equation (34), 

agrees with quantum mechanics, as given in equation (16), where 

             
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    

 

 

    

      

  
.              (38) 

As an overviewof the key results associated with this ICHV statistical spin model,first and foremost it 

should be clear that a nonlocal structure is not necessary to achieve the quantum mechanical spin 

results (although, until now, this has been the predominant assumption).  Instead, the quantum 

mechanical result was achieved by using a strategically chosen statistical model of the spin structure, 

which incorporates a probability density, equation (36), which is a function of the separation angle 

between measurements, .  Here, it should be clear that the spin model is fundamentally local, as the 

spin structure is built into the model at the outset prior to measurement of either particle.  Ultimately, 

in combination with the 1 normalized spin product values, equation (35), and the associated 

probability density, equation (36), the ICHV local spin model leads to the spin product expectation 

value, equation (38), which reproduces precisely the quantum mechanical result, equation (16),where

     cosICHV QMP P     .  In addition, it is important to note that the ICHV model is offered as 

an approach to understand a possible explanation for the unusual quantum mechanical results.   

Specifically, the hidden variable,  , is utilized in order to incorporate the needed statistics for the spin 

model so that it matches the quantum mechanical spin product expectation value result without 

employing exotic concepts, such as the need for a nonlocal spin mechanism.  Furthermore, recall that 

the spin measurement concept employed here is that the spin system in combination with the 

measuring device is sufficiently complex such that the spin states cannot be predicted precisely in 

advance.  The spin result should be thought of as emergingduring the process of measurement (for 

example, as found in systems which exhibit deterministic chaos), while statistical spin results can be 

consistently predicted for the pair of singlet state particles as a function of the separation angle of 

measurement, .  Here, it should be noted that it is the hidden variable parameter in the ICHV spin 

correlation model that mathematically incorporates the unpredictability of a specific spin 

measurement realization result, possibly representing the infinite variety of initial conditions in the 

measurement process.  Ultimately, in addition to presenting a local spin theory that agrees with 

quantum mechanics, one of the primary results of the ICHV analysis is to demonstrate that it may be 

possible in the future to create more sophisticated (nonlinear dynamics) quantum spin models which 

incorporate the needed unpredictability, but which will also predict the well-known statistical 

quantum spin results. 
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6. DISCUSSION OF EPR PROPOSAL USING ENHANCED QUANTUM MODELS 

Given the alternate understanding of the spin product expectation value, provided in section 5, it is 

useful to revisit the EPR proposal.  This is done by considering that the quantum measurement 

process may be better elucidated using emergent behavior concepts, which are traditionally associated 

with classical systems that exhibit deterministic chaos, but until now, have not been applied to 

quantum systems.  First of all, it is important to recall that the key problem with the EPR argument (as 

described in section 2), as well as with the analogous Bohm spin measurement analysis (as described 

in section 3), is that they both assume measurements associated with non-commuting operators are 

actually simultaneous elements of reality, existing prior to measurements taking place.  For the case of 

the EPR argument, the momentum and the position measurements of two separated entangled 

particles were consideredusing the concept of a two-particle quantum state, built on a superposition of 

anti-correlated momentum eigenfunctions.  For the case of the Bohm spin analysis, two orthogonal 

spin component measurements of two separated entangled particles were considered using the concept 

of a two-particle singlet spin zero quantum state, built on a superposition of anti-correlated spin 

eigenfunctions.However, for either of these entangled quantum state analyses, as the measurements of 

the second paired particle could always be precisely predicted prior to measurements, by instead using 

measurements on the first particle in the pair, it was reasonable to assume that measured values were 

associated with precise elements of reality, which existed prior to measurements actually occurring.  

Note that this was the rationale behind the incorrect proposal that Einstein put forth in the EPR 

argument. 

Secondly, it was not until the advent of the Bell inequality analysis, which clearly exhibited the 

unusual spin correlation between separated singlet state particles, as described in section 4, that spin 

component values were finally demonstrated as not beingelements of reality, which exist prior to 

measurements actually occurring.  Here, it is important to note that this is precisely why the local and 

precise hidden variable spin model proposal, equation (19), failed to reproduce the quantum 

mechanically derived spin product expectation value, equation (16), using the hidden variable 

construct for the spin product expectation value, equation (21).  In addition, it should be noted that the 

added complexity proposed in the Bell analysis was necessary, where spin values of the separate 

particles were considered in general measurement directions, which allowed for the (all important) 

general statistical correlation between spin measurements to be explored, in contrast to the much 

simpler and precise anti-correlation that occurs for spin measurementsin the same direction. 

Ultimately, with the knowledge that a precise hidden variable theory of spin cannot be constructed to 

agree with quantum mechanics, it is important to note that a local spin model can be used to reproduce 

the quantum mechanical spin product expectation value result, if the model is statistical (as was 

shown in section 5), where the statistical spin model given by equations (35) and (36), was used to 

derive the ICHV spin product expectation value result, equation (34).  The key point here is that the 

quantum mechanical results finally make sense if measurements are viewed as an emergent reality, 

but not viewed as a given reality that exists prior to measurement, which had been falsely assumed in 

the EPR argument. 

Finally,it is important to point out that it was much simpler to analyze two-state spin systems, as was 

done in the Bell inequality analysis, to show that precise hidden variable theories cannot represent 

quantum reality, than it would have been to analyze infinite-state traveling wave systems, as was 

proposed in the EPR analysis.  However, as advertised at the outset of this publication, in section 1, 

the focus in this section will be to connect the emergent behavior concepts, learned from the 

exploration of the measurement of two-state spin systems, applied to the continuous quantum 

mechanical wave function systems of traveling particles, as was the focus of the EPR analysis.  In 

either case, the two-state system or thecontinuous wave function system, the key problem with the 

interpretation of an underlying reality, prior to measurement, is that the measurement process in 

quantum mechanics is typically described as causing a wave function collapse.  In this description of 

reality, the measured values are associated with the eigenfunctions of the linear operator theory, 

which is used to model the measuring device, either for spin component state measurements or for 

momentum state measurements.  Here, it should be emphasized that the physics associated with the 

mystical concept of a wave function collapse is precisely what is needed to understand the emergent 

behavior of a quantum system that occurs upon measurement, which is the focus of this publication. 
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In the following, in order to propose how one might apply the emergent behavior knowledge,that was 

gained by exploring the two-state quantum spin system (addressed in section 5), to the infinite-state, 

traveling particle, quantum wave function system, it is useful to first remind the reader of the discrete 

(quantum) aspect of quantum measurements.  Here, it is important to recall that the discreteness found 

in quantum systems is typically expressed as being proportional to the (normalized) Planck constant, 

 .  For example, in the case of the two-state spin ½ particle quantum system, the difference of the 

spin values, between the spin up and down states, is exactly the Planck constant, where 

   / 2 / 2zS        .  However, even for classically continuous systems, such as the orbital 

angular momentum, zL , in the ẑ  direction, of an electron orbiting a proton, as found in a hydrogen 

atom, the discrete size of the possible minimum change in the associated quantum mechanical angular 

momentum, is also the Planck constant; for example, considering an 2m   down to an 1m  

transition, then 2 1 2 1z m mL L L         .  Furthermore, this concept of the discreteness size 

being proportional to the Planck constant is also true in general for any bound quantum mechanical 

system, whether one is considering changes in linear momentum p , or changes in the canonically 

conjugate spatial coordinate, y .  Although, for truly infinite size systems, such as an infinite size box 

along the y  coordinate of interest, the discreteness size approaches zero, where the associated 

quantum mechanical states approach a continuum of states; for example, the momentum states 

(described in section 2),  k y , incorporate a continuous wavenumber index, k , where the 

momentum values are also continuous, p k  .  Nevertheless, in reality, for any measuring system 

that one can actually construct, it should be assumed as havinga finite size.  Consequently, in the 

following discussion which addresses an extended analysis of the EPR proposal, we will assume that 

all measurements of quantum systems will incorporate the usual concept of quantum discreteness, 

whether it is for measured values of spin, associated with a Stern-Gerlachgradient magnetic field 

induced spin up or spin down trajectory, as in the Bell proposed spin measurements, or whether it is 

for measured values of momentum or position, associated with particle trajectories, as in the EPR 

proposed measurements. 

Ultimately, considering the above discussion on thepractical proposal for measurements of quantum 

discreteness in various systems, here it is assumed that the constraints associated with spin 

measurements, as well as with particle momentum and position measurements, are essentially the 

same.  Consequently, the notion that was presented in section 5, where it was assumed that the 

emergent behavior in the spin measurement process is more accurately associated with an underlying 

highly sophisticated dynamical complexity, in which either the discrete spin up or the spin down 

states evolve as they are observed (in the Bell spin analysis), will also be applied to the seemingly 

continuous aspect of the momentum and position measurement of a particle trajectory (in the EPR 

particle trajectory analysis).  In order to reiterate and extend the key conclusions associated with the 

emergent behavior that occurs during spin measurements (first discussed towards the end of section 

5), it is important to recall that it is reasonable to assume that the quantum spin system, in 

combination with a classical spin measuring device, exhibits a significant overall complexity (as 

found in the Bell spin analysis).  Specifically, it is assumed that the combined system should be 

modeled using nonlinear dissipative dynamics, which in classical systems, typically exhibit 

deterministic chaos solutions, which show an extreme sensitivity to initial conditions.  Furthermore, 

employing the ICHV statistical spin model, it is important to recall that the hidden variable parameter,

 , could be thought of as representing the infinite variety of initial conditions which lead to the 

unpredictable results of the emerging behavior analysis.  However, since the linear operator theory for 

the spin system only has two possible discrete state solutions, the result of the highly complex 

nonlinear dynamics evolution must be quite simple, with either a spin up or a spin down result. 

For the case of the EPR particle trajectory analysis, a similar approach could be used, as was proposed 

for the Bell spin analysis, by combining the quantum wavefunction analysis of the particle trajectory, 

with a classical momentum and position measuring device, resulting in a highly complex overall 

system, used to achieve the observed unpredictable emergent measurement behavior.  However, it 

would be more difficult to devise an overall nonlinear dissipative dynamics model to effectively 

combine measurements of momentum and position of the particle, within the constraint of the 

uncertainty principle, than it would be to devise an overall complex spin model that combines two 

orthogonal components of spin; however, in principle this can be achieved.  Furthermore, it is also 
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clearly more difficult to include the numerous possible quantum momentum state and position state 

results in the EPR trajectory analysis, associated with all the quantized linear operator theory 

momentum and position state results, than it would be for the two-state spin system; however, once 

again, in principle this can be achieved.  Finally, given these concepts for modeling the unpredictable 

emergent behavior of the combined momentum and position measurements of two correlated particle 

trajectories, an extension of the EPR anti-correlation particle trajectory analysis can be achieved to 

explore the general type of correlations that were addressed in the Bell spin analysis.  Specifically, an 

extension of the EPR analysis could be done to achieve a general combination of momentum and 

position measurements, in a similar fashion as the Bell analysis extended the simple anti-correlation 

spin measurements, proposed by Bohm, to include a general combination of two orthogonal spin 

components for each particle.  Given these proposed emergent behavior measurement simulations, it 

would finally be clear that the proposed existence of canonically conjugate momentum and position 

values, as being actual elements of physical reality (as Einstein had proposed), prior to measurements 

occurring, would be shown as an incorrect assumption, just as was shown in the Bell analysis using a 

hidden variable spin assumption. 

7. CONCLUSION 

As noted at the end of section 6, it should now be clear from an emergent measurement behavior 

perspective, that the momentum and position values are not to be considered as elements of physical 

reality, prior to measurements actually taking place, associated with the EPR particle trajectorytype of 

experiments.  However, this would have invalidated Einstein’s proposal, as he had assumed that the 

momentum and position were elements of physical reality, in order that he was able to assert that 

quantum mechanics should not be considered as a complete description of physical reality.  

Nevertheless, the conclusion of this publication is that the thrust of his proposal was in fact correct, as 

it will be shown in the following. 

First, it is useful to review some of the relevant conclusions provided throughout this document. 

1) As pointed out in section 2, since the EPR proposal dealt with precisely anti-correlated (momentum 

and position) entangled particles, which are strategically separated in a non-disturbing fashion, it was 

not clear that, in the limited anti-correlation context of the proposal, the momentum and position were 

not actually elements of physical reality, as Einstein had proposed.  Here, it should be recalled that it 

is quantum theory which dictates that measurements associated with non-commuting operators cannot 

be known simultaneously; although, the quantum physics community and experiments still support 

this quantum theory notion pertaining to nature, just as Bohr had originally used in his arguments 

against the EPR proposal. 

2) As pointed out in section 3, since the Bohm spin proposal also dealt with precisely anti-correlated 

(spin) entangled particles, which are strategically separated in a non-disturbing fashion, it was also not 

clear that, in the limited anti-correlation context of the proposal, the two orthogonal components of 

spin were not actually elements of physical reality.  Again, it is quantum theory which postulates that 

two orthogonal components of spin cannot be known simultaneously; although, once again, this is in 

agreement with experiments.  However, it should be noted that Bohm did not believe that the spin 

components were elements of physical reality, as he described them as being potentialities until 

measurements actually take place, which would have been in disagreement with Einstein’s proposal 

for a hidden variable aspect of the quantum mechanical reality.  Nevertheless, it is somewhat ironic 

that Bohm did eventually believe in a hidden variable concept of quantum mechanics, which he 

developed extensively starting in the early 1950s; however, his theory was fundamentally nonlocal, 

which would have been very distasteful to Einstein. 

3) As pointed out in section 4, the Bell analysis extended the Bohm spin proposal of separated spin 

zero singlet state entangled particles, to include general spin measurement directions.  Consequently, 

due to the Bell inequality experiments, as well as the local hidden variable theory of spin used for its 

development, it was finally and definitively concluded that local hidden variable spin models cannot 

be designed to agree with quantum reality.  However, since that time much of the physics community, 

including Bell, has assumed that the unusual spin correlation exhibited in the Bell spin analysis is due 

to an underlying nonlocal construct, which would have also been very disturbing to Einstein.  

Nevertheless, as a result of the Bell analysis, it is most widely believed that spin components are not 

actually elements of physical reality until measurements are done.  In addition, it is also widely 
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believed that this argument applies to the EPR proposal, where momentum and position values should 

not be assumed as elements of physical reality until measurements occur.  Consequently, whether for 

spin or for particle momentum and position trajectory measurements, it was finally quite clear that in 

the quantum domain of nature, one cannot consider the existence of elements of physical reality as 

being precise until measurements are actually done. 

4)  As pointed out in section 5, due to the recent development of the ICHV statistical spin model, the 

Bell spin experiments can instead be understood more clearly using a local spin concept.  

Furthermore, it was concluded that the unusual spin correlation between separated particles, which 

includes precise anti-correlation spin aspects as well as random spin aspects, is better understood as 

an emergent behavior which results upon measurement.  In addition, the statistical aspect of the result 

incorporates a hidden variable parameter, which could be viewed as representing the infinite variety 

of initial conditions, which allow for the unpredictable aspects of the correlation between spin 

measurements.  It was further emphasized that the exotic spin results could be modeled in a similar 

fashion as one models classical nonlinear dissipative systems which exhibit deterministic chaos.  In 

any case, it was once again concluded that the spin values should not be viewed as elements of 

physical reality until measurements are actually conducted. 

5) As pointed out in section 6, the concept of an emergent behavior underlying quantum 

measurements, as first applied to the Bell spin analysis (given in section 5), was finally applied to the 

EPR particle trajectory proposal for the measurements of momentum and position.  Although the two-

state spin approach, which was applied to the Bell analysis of general spin measurements, is quite 

simple, it was argued that a similar analysis could be applied to the infinite-state aspects of particle 

trajectories, used to extend the EPR analysis in order to demonstrate the more exotic statistical 

correlations which would be present for general measurements.  It was pointed out that this type of 

extended analysis of the EPR proposal could be achieved by considering a far more complex approach 

than is done using linear operator theory for quantum systems.  Specifically, it is envisioned that a 

quantum wave function analysis of the particle trajectory should be combined with a classical 

momentum and position measurement model, in order to achieve a highly complex overall system 

model, which would behave in a similar fashion as nonlinear dissipative systems, which exhibit 

deterministic chaos and the associated extreme sensitivity to initial conditions.  In this sense, the non-

predictable aspects of the emergent measurement behavior of the quantum system could be correctly 

modeled.  Once again, this could be used to demonstrate that the values of momentum and position of 

an EPR particle trajectory should not be viewed as elements of physical reality, until the 

measurements are done.  However, most importantly, development and verification of such an 

extended and complex measurement model, could ultimately be used to provide better understanding 

of the emergent nature of quantum measurements. 

Finally, with all these lessons learned in mind (stated in the five review points given above), it is 

important to reconsider the intent behind Einstein’s original EPR argument, which postulated that 

quantum mechanics should not be considered as a complete description of physical reality. Clearly, 

from our knowledge of the sophisticated quantum spin correlations associated with the Bell analysis, 

it is clear that local hidden variable theories of spin cannot model the quantum spin measurement 

process.  In addition, applying these concepts to an extended EPR proposal of general momentum and 

position correlations, it would also be reasonable to assume that a local hidden variable theory of the 

particle trajectories cannot model the quantum particle trajectory measurement process.  In either 

case, elements of a quantum system cannot be considered as physically real, prior to measurements 

actually occurring, which would have invalidated Einstein’s EPR proposal. However, it is important 

to keep in mind that at the time of the EPR proposal, Einstein was limited to only considering a 

quantum linear operator theory proposal for the measurement process.  Which, as usual in traditional 

quantum mechanics, must be supplemented by a mystical wave function collapse to the linear 

operator states, when measurements occur.  Furthermore, Einstein was not privy at that time to our 

recent knowledge base associated with deterministic chaos, which is most readily exhibited using 

numerical simulations of nonlinear dissipative systems.  Consequently, at that time, it would not have 

been a logical proposal of Einstein’s to consider an extension of the quantum analysis, in order to 

include a measurement process which could be understood as an unpredictable emergent behavior, 

modeled using a highly complex nonlinear dynamic system.  Nevertheless, it seems clear that Einstein 
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was correct in proposing that quantum mechanics, as modeled using linear operator theory, is not 

complete.  Ultimately, it is reasonable to assume that Einstein was envisioning the need for a far more 

complex model of the quantum realm of reality, even if his original EPR proposal was not sufficient 

to explain this profound conjecture. 
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