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Abstract: Using the interacting boson model (sd-IBM1) Hamiltonian in Casimir and multipole forms and the 

approach of intrinsic coherent state formalism, the evolution of shapes from spherical vibrator U(5) to 

deformed axially rotor Su(3) along the even-even Ra isotopes are investigated. The expectation value of the IBM 
Hamiltonian in the intrinsic coherent state for each nucleus provides the potential energy surface (PES) as a 

function of deformation parameters β and   . The PES ,s are systematically analysed and the critical points are 
identified . We find that the 218Ra, 220Ra are vibrational while 226,228,230Ra are rotational, the two nuclei 222Ra and 
224Ra are transitional and close to the critical point symmetry X(5) limit. Also the PES ,s are rewritten in terms 

of the essential two parameters r1,r2 and the locus of the critical points in the essential parameter r2-r1 space are 

given. The X(5) predictions and our IBM calculations for Ra isotopic chain reproduce the energy ratios and the 

quadrupole transition probabilities B(E2). The vibrational to an axially prolate rotational shape phase 

transition is shown to take place quite smoothly as a function of boson number in the considered Ra isotopic 

chain. Some selected excitation energies and B(E2) values are calculated by using the PHINT code and a 

simulated fitting search program to derive the optimal best IBM parameters.    

Keywords: shape phase transition, IBM

 

1. INTRODUCTION 

The study of nuclear shape phase transitions [1-7] have gained much theoretical interest, since the 

discovery of the critical point symmetries E(5) [8] and X(5) [9]. Most of these works have 
concentrated on the shape transition from spherical to deformed prolate [10,11] and the shape phase 

transition from spherical to - unstable [12-14]. In these studies there have been used several 
approaches, the most powerful approaches are the geometric collective model (GCM) [15, 16] and the 

interacting boson model [17]. The algebraic IBM was designed to describe the collective quadrupole 

degrees of freedom in medium mass and heavy nuclei. The IBM Hamiltonian was written from the 
beginning in second quantization form in terms of the generators of the U(6) group, subtended by s 

and  d bosons which carry angular momenta 0 and 2 respectively. The three possible phases that can 

occur in the sd IBM for nuclei were classified as U(5), Su(3) and O(6), geometrically corresponding 

to spherical vibrator, axial rotator and  -unstable rotation respectively. It was shown that the critical 

points of the first order shape phase transition between U(5) and Su(3) and the second order shape 
phase transition between U(5) and O(6) hold the critical point symmetries X(5) and E(5) respectively. 

The full shape of the transitional region can be characterized in terms of the Casten triangle [18]. It 

was shown that [19] the shape phase diagram depends on two independent combiners of the 
parameters IBM Hamiltonian called the essential parameters r1 and r2 which can be used to classify 

the equilibrium configure. Observables that are often used to follow the evolution of shape transitions 

along the isotopic chains are for example ratios of excitation energies 𝑅𝐿,2 = 𝐸(𝐿1
+)/𝐸 21

+  

electromagnetic transition such as the reduced quadrupole transition probabilities                        

𝐵 𝐸2, 21
+ → 01

+ , 𝐵 𝐸2, 02
+ → 01

+  and 𝐵 𝐸2, 22
+ → 01

+ /𝐵 𝐸2, 22
+ → 21

+ , two neutron separation 
energies, isomer shifts and isotope shifts.  

The plan of the present work can be divided into two stages: the first stage is to make use the 

consistent Q formalism of the original version of the IBM with the intrinsic coherent state approach to 

study the shape transition between the U(5) limit corresponding to a vibrating nucleus to the Su(3) 

limit corresponding to an axial-symmetric rotating nucleus. The second stage is to applied our results 
to the even-even Ra isotopic chain. The outline of the paper is as follows: In section 2, we presented 
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the IBM Hamiltonian used. Section 3, is devoted to construct the PES 
,
s by calculating the expectation 

value of the proposed Hamiltonian on the coherent state, and their evolution when moving between 

the different dynamical symmetries are studied. The critical points in the shape transition are 

identified and also the two essential parameters are given in section 4. In section 5, the dynamical 

symmetries U(5),Su(3) and O(6) are studied. In section 6, the characteristic quantities identifying the 
shape phases in the IBM are presented. Numerical calculations are performed in section 7, for even-

even Ra isotopic chain and the advantages of the present approach are discussed. Finally, some 

concluding remarks are also given.   

2. IBM1 HAMILTONIAN WITH ONE AND TWO BODY TERMS 

The consistent Q formalism (CQF) [20] provides a simple and convenient three parameter space for 

IBM that span the entire Casten triangle. We make use the U(5)-Su(3) transitional Hamiltonian 
composed of the linear Casimir operator of the limit U(5), the quadratic Casimir operator of the limit 

Su(3) and the quadratic Casimir operator of the subgroup O(3) 

𝐻 𝑈 5 − 𝑆𝑢 3  = 𝜀𝑑𝐶1 𝑈 5  + 𝛿𝐶2 𝑆𝑢 3  + 𝛾𝐶2 𝑂 3                           (1) 

Here Cn[G] is the n-rank Casimir operator of the lie group G with 

𝐶1 𝑈 5  = n d                                                                         (2) 

𝐶2 𝑂 3  = 2(𝐿  . 𝐿 )                                                               (3) 

𝐶2 𝑆𝑢 3  =
3

4
 𝑄  . 𝑄  +

1

2
(𝐿  . 𝐿 )                                          (4) 

Where n d , L  and Qx   are the d-boson number operator , the angular momentum operator and the 
quadrupole operator respectively, defined as : 

n d  =  dμ

†
μ   d  μ                                                               (5) 

L =  10  [d
†

 x  d ](1)                                                            (6) 

Q = [s
†

x  d  +  d
†

x  s ](2) + χ [d
†

 x  d ](2)                                  (7) 

Where  s
†

(s)   and  d
†

(d) are monopole and quadrupole boson creation (annihilation) operators 

respectively and   χ  is the structure  parameter and it is shown by microscopic theory to lie between 

− 7/2 and  7/2 . 

In terms of the multipole operators  n d , L  and Q  , the IBM Hamiltonian (1) can be rewritten as:   

𝐻 𝑈 5 − 𝑆𝑢 3  = 𝜀𝑑n d + 𝑎1 𝐿  . 𝐿 + 𝑎2 𝑄  . 𝑄                                  (8) 

Where  𝑎1 = 2𝛾 +
1

2
𝛿 ,    𝑎2 =

4

3
𝛿                                                          (9) 

and we introduce the scalar products  

𝐴(𝑙) . 𝐵(𝑙) =  2𝑙 + 1 [𝐴 𝑙  x 𝐴 𝑙 ]0
(0)

                                            (10) 

𝐿  . 𝐿 = −5 3 [[d
†

x  d ](1) x [d
†

x  d ](2)  ]0
(0)

                                    (11) 

𝑄  . 𝑄 =
1

2
 5 [([s

†
d + d

†
s] 2 + 𝑥 [d

†
x  d ](2)) x ([s

†
d + d

†
s] 2 

+ 𝑥 [d
†

x  d ](2)) ]0
(0)

                                                                                                             (12) 

The interaction parameters  ,  a1 , a2 in terms of code PHINT [21] notation EPS, ELL and QQ are 

𝜀𝑑 = 𝐸𝑃𝑆, 𝑎1 =
1

2
𝐸𝐿𝐿  , 𝑎2 = 𝑄𝑄                                      (13) 

3. THE CLASSICAL ENERGY LIMIT OF THE HAMILTONIAN  

In order to analyze the shape phase structure of our model, an intrinsic coherent state for the IBM 

Hamiltonian was proposed [17,22,23] in terms of shape parameters β and . In this approach, the 
ground state is a variational state built out of bosons defined by the creation operator  
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 
†

=
1

 1+𝛽2
  s

†
+ β cos γ  𝑑0

†
+

1

 2
β sin γ  𝑑2

†
+  𝑑−2

†
                      (14) 

And the N boson condensate is  

  𝑁𝛽𝛾  =   
1

 𝑁!
 ( 

†
)𝑁    0                                                    (15) 

where N is the total number of bosons and    0   is the boson vacuum. The intrinsic shape variables β 

and  are the order parameters of the nucleus, the deformation parameter β  measure the axial 

deviation from sphericity, while the angle variable  controls the departure from axial symmetry. We 

set =0 to study only the β dependence.  

The expectation value of the Hamiltonian (8) in the intrinsic coherent state (15) provides the potential 
energy surface (PES) of the nucleus. The PES in terms of the parameters of the Hamiltonian and 

deformation parameter β can be written as  

𝐸 𝑁, β =  N, β  H  N, β = c1
Nβ2

1+β2 +
N(N−1)

(1+β2)2
 c2β2 + c3β3 + c4β4 + c0           (16) 

where c1 = 𝜎 +  𝑥2 − 4  a2                                                                                       (17) 

c2 = 4 a2                                                               (18) 

c3 = −4 2/7 𝑥  𝑎2                                               (19) 

c4 =
2

7
𝑥2a2                                                             (20) 

c0 = 5 𝑁 a2                                                            (21) 

with        𝜎 = 𝜀𝑑 + 6 a1                                                                                           (22) 

The shape of the nucleus is defined through the equilibrium value of the deformation parameter β 
which is obtained by minimizing the ground state energy E(N, β). A spherical nucleus has a global 

minimum on PES at β=0 where as a deformed one has minimum at β ≠ 0. 

If we introduce coctrol parameter λ such that 

λ =
−a2

𝜎
 (N − 1)                                                     (23) 

Then the PES (16) depends only on two parameters  λ and χ and take the form 

𝜀 𝑁, 𝛽 =
𝐸 𝑁, 𝛽 

𝜎
=  1 − 𝑒λ 

Nβ2

1 + β2
+

Nλ

 1 + β2 2
 −4β2 + 4 

2

7
 𝑥β3 −

2

7
𝑥2β4  

                                                       −5λ
N

N−1
=

A2β2+A3β3+A4β4

 1+β2 2 + A0                                              (24) 

where 𝐴2 = [1 −  4 + 𝑒λ) N                                                                           (25) 

𝐴3 = 4 2/7 𝑥λN                                                                                (26) 

𝐴4 = [1 −  
2

7
𝑥2 + e  λ]N                                                                 (27) 

𝐴0 = −5λ
N

N−1
                                                                                       (28) 

with  𝑒 =
𝑥 2−4

𝑁−1
                                                                                                                          (29) 

4. CRITICAL BEHAVIOR IN U(5)-SU(3) SHAPE PHASE TRANSITION 

To analize the critical behavior for the energy functional equation (24). The antispinodal point occur 

when 𝜀 𝑁, 𝛽  becomes flat at 𝛽 =0 or when   
𝜕2𝜀

𝜕𝛽2
 
𝛽=0

= 0 , (A2=0), the critical point occur when 

𝐴3
2 = 4𝐴2𝐴4 and the equilibrium value of 𝛽 occur when the first order derivative of   𝜀 𝑁, 𝛽  with 

respect to 𝛽 vanish 
𝜕𝜀

𝜕𝛽
= 0 These conditions yield the following for antispinodal point  

λ𝑎 =
1

4+𝑒
                                                                        (30) 
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for critical point 

1 −  4 +
2

7
𝑥2 + 2𝑒 λ𝑐 +  

2

7
𝑥2 + 4 𝑒λ𝑐

2 = 0                                                                                   (31) 

for equilibrium yield the cubic equation 

2𝐴2 + 3𝐴3𝛽𝑒 +  4𝐴4 − 2𝐴2 𝛽𝑒
2 − 𝐴3𝛽𝑒

3 = 0                                   (32) 

According to the catastrophe theory [19,24,25] the PES can be rewritten in a special form in terms of 

two essential parameters r1 and r2 which gives the locus of the critical points in plane forming by r2, r1. 

The essential parameters r1 and r2 are defined as: 

𝑟1 =
𝑐2 +

𝑐1
𝑁 − 1

2𝑐4 +
𝑐1

𝑁 − 1
− 𝑐2

  , 𝑟2 =
−2𝑐3

2𝑐4 +
𝑐1

𝑁 − 1
− 𝑐2

                                                                               (33) 

In terms of the control parameter λ the essential parameters takes the form, 

𝑟1 =
1 − λ(4 + e)

1 − λ(
4
7

𝑥2 − 4 + e)
                                                                                                                                 (34) 

𝑟2 =
−8  2/7 𝑥 λ

1 − λ(
4
7 𝑥2 − 4 + e)

                                                                                                                                 (35) 

For axially symmetric deformed prolate rotator  𝑥 = − 7/2 , then the coefficients A2, A3 and A4 of 
equation (24) becomes 

𝐴2 =  1 −  4 −
9

4𝑁 − 4
 λ N                                                                                                                         (36) 

𝐴3 = −2 2 λ N                                                                                                                                                   (37) 

𝐴4 =  1 −  
1

2
−

9

4𝑁 − 4
 λ N                                                                                                                          (38) 

The corresponding antispinodal λa and critical λc points are 

λ𝑎 =
4𝑁 − 4

16𝑁 − 25
                                                                                                                                                   (39) 

1 −  
9

2
+ 2𝑒 λ𝑐 +

9

2
𝑒 λ𝑐

2 = 0                                                                                                                          (40) 

with 𝑒 =
−9

4𝑁−4
                                                                                                                                                      (41) 

If we eliminate the contribution of one-body terms of the quadrupole-quadrupole interaction (e = 0), 

the PES takes the form ( when 𝑥 = − 7/2 ) 

𝜀 𝑁, 𝛽 =
Nβ2

1 + β2
−

Nλ

 1 + β2 2
 4β2 + 2 2 β3 +

1

2
β4 

= N
 1 − 4λ β2 − 2 2β3 + (1 −

1
2 λ)β4

 1 + β2 2
                                                                                                     (42) 

In this case the antispinodal and critical points are located at 

λ𝑎 =
1

4
   , λ𝑐 =

2

9
                                                                                                                                  (43) 

The corresponding essential parameters r1 and r2 of the shape diagram are 

𝑟1 =
1 − 4λ

1 + 3λ
     ,   𝑟2 =

4 2 λ

1 + 3λ
                                                                                                                          (44) 

Therefore 



Structural Evolution in Radium Nuclei Using IBM Consistent-Q Hamiltonian with Coherent State

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page 28 

𝑟1𝑎 = 0    ,   𝑟2𝑎 =
4 2 

7
                                                                                                                                     (45) 

𝑟1𝑐 =
1 

15
    ,   𝑟2𝑐 =

8 2 

15
                                                                                                                                   (46) 

The equilibrium value of the deformation parameter 𝛽 is given by solving the cubic equation 

 1 − 4λ −3 2 λ 𝛽𝑒 + (1 + 3λ)𝛽𝑒

2
+  2  λ 𝛽𝑒

3 = 0                                                                                 (47) 

The deformation parameter 𝛽 at the critical point ( λc =2/9) is given by 

𝛽𝑒 =
1

2 2
=

𝑟2𝑐

1 +  1 +
1
2

𝑟2𝑐
2

                                                                                                                          (48) 

To illustrate the critical behavior in the shape phase transition, a sketch of the U(5)-Su(3) evolution 

for  𝑥 = − 7/2 and large N limit is shown in Figure (1) for λ𝑐 ≤  λ ≤ λ𝑐 . For λ = 1/9 , the nucleus 

is in the symmetric phase since the PES has a unique minimum at 𝛽 = 0. When λ increase to critical 

point  λ = 9/11, the nonsymmetric and symmetric  minima  attain the same depth, greater than this 

value, the symmetric minimum at  𝛽 = 0  becomes a local minimum till λ = 1/4 where it becomes 

unstable antispinodal point. 

5. DYNAMICAL SYMMETRY LIMITS U(5) AND SU(3) 

(i) For  a1=a2=0, the original Hamiltonian of equation (8) reduces to the vibrational U(5) limit of the 

IBM 

𝐻 𝑈 5  = 𝜀𝑑 n d                                                                                                                                                   (49) 

The corresponding PES is given by 

𝐸 𝑈 5  = 𝜀𝑑

Nβ2

1 + β2
                                                                                                                                         (50) 

In this limit the essential parameters r1, r2 and the equilibrium value of  𝛽 are given by r1=1, 

r2=0, 𝛽𝑒 = 0 

(ii) For  𝜀𝑑 = 𝑎1 = 0 and 𝑥 = −
 7

2
 , γ = 0 the Hamiltonian (8) reduces to the rotational Su(3) limit 

(axially deformed shape) 

𝐻 𝑆𝑢 3  = 𝑎2 𝑄 (𝑥 = − 7/2) . 𝑄 (𝑥 = − 7/2)                      (51) 

And if we eliminate the contribution of the one body terms of the quadrupole-quadrupole interaction, 

the PES reads 

𝐸 𝑆𝑢 3  = 𝑎2

N(N − 1)

 1 + β2 2
 4β2 + 2 2 β3 +

1

2
β4                                                                                      (52) 

The essential parameters r1,r2 and the equilibrium value of 𝛽 are given by 

𝑟1 = −
4 

3
    ,   𝑟2 =

−4 2 

3
 ,   𝛽𝑒 =  2                                                                                                          (53) 

6. OTHER TESTS OF THE CRITICAL POINT BEHAVIOR 

In several U(5)-Su(3) transitional nuclei, the low lying energy ratios R L,2 and the ratios of the electric 
quadrupole reduced transition probabilities B L,2  reproduce  the X(5) critical point symmetry. 

For ground state band the energy ratio R L,2 is defined as 

𝑅𝐿,2 =
𝐸(𝐿1

+)

𝐸(21
+)

=  

𝐿

2
                       𝑓𝑜𝑟 𝑈(5)

𝐿(𝐿 + 1)

6
          𝑓𝑜𝑟 𝑆𝑢(3)

                                                                                                 (54)  
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The electric quadrupole reduced transition probabilities B L,2  is defined as 

𝐵 𝐸2, 𝐿𝑖 → 𝐿𝑓 =
1

2𝐿𝑖 + 1
  𝐿𝑓

  𝑇(𝐸2)  𝐿𝑖  
2

                                                                                              (55) 

where Li and Lf are angular momenta of the initial and final states respectively. The E2 transition 

operator T(E2) is given by 

𝑇 𝐸2 = 𝑒 𝑄                                                                                                                                                          (56) 

with e being the boson effective charge. The ratios B L,2 for the U(5) and Su(3) dynamical symmetry 

limits are given by 

𝐵𝐿+2,2 =
𝐵 𝐸2, 𝐿 + 2 → 𝐿 

𝐵 𝐸2, 21
+ → 01

+ 
     

=

 
 
 
 

1

2
 𝐿 + 2 (1 −

𝐿

2𝑁
)                                                          𝑓𝑜𝑟 𝑈(5)

15

2

 𝐿 + 2  𝐿 + 1 

 2𝐿 + 3  2𝐿 + 5 
(1 −

𝐿

2𝑁
)(1 +

𝐿

2𝑁 + 3
)          𝑓𝑜𝑟 𝑆𝑢(3)

                            (57)  

7. NUMERICAL RESULTS 

(i) Derived IBM parameters 

The χ2 test is used in the fitting produce in order to extract the optimal best parameters of the 

IBM Hamiltonian. The χ2 function is defined in the standard way as 

χ2 =
1

𝑁𝑑𝑎𝑡𝑎
  

𝑥𝑖(𝑑𝑎𝑡𝑎) − 𝑥𝑖(𝐼𝐵𝑀)

∆ 𝑥𝑖(𝑑𝑎𝑡𝑎)
 

2
𝑁𝑑𝑎𝑡𝑎

𝑖=1

 

where Ndata is the number of experimental date, 𝑥𝑖 𝑑𝑎𝑡𝑎  describe the experimental excitation energy 

of some selected energy levels and some selected B(E2) values, and 𝑥𝑖(𝐼𝐵𝑀) denotes the 

corresponding calculated IBM values and ∆ 𝑥𝑖(𝑑𝑎𝑡𝑎) assigned the experimental errors to each 

𝑥𝑖(𝑑𝑎𝑡𝑎) point. The minimization is carried out for each isotope separately using PHINT and a 

simulated fitting search program to derive the optimal best IBM parameters. 

(ii) Evolution of low-lying spectra 

A phase transition in nuclear shape exhibit a sharp change in the excitation energy of the first  21
+ 

level  and energy ratio  R4/2 = 𝐸(41
+)/𝐸(21

+) as a function of the total boson number NB along the 

considered isotopic chain. Figure (2) illustrate 𝐸(21
+) and R42 as a function of NB for the Ra isotopic 

chain. The decrease of 𝐸(21
+)  with increasing NB shows a corresponding increase of collectivity and 

we observe a transition between vibrational R4/2 =2 (for lighter isotopes) to clear rotational R4/2 =3.33 

for heavier isotopes above A=226 with critical point located at 
224,226

Ra ( NB =7,8). Figure (3) shows 

the energy ratios RL2 for Ra isotopic chain compared to the U(5), X(5) are Su(3) symmetry limits. We 

see that 
118,120

Ra are near the U(5) (vibrational) while 
226,228,230

Ra are near Su(3)(rotational), the two 

nuclei 
222,224

Ra are close to the critical point symmetry X(5) limit. In figure (4) the calculated B L+2,2 

ratios for the best candidate 
224

Ra ( NB=8 which is close to the critical point symmetry X(5)) are 

compared to the U(5) and Su(3) predictions. 

The PES 
,
s  𝐸 𝑁, 𝛽  with the coefficients listed in Table (1) according to  𝑥 = −

 7

2
 , γ = 0 are shown 

in Figure (5) for Ra isotopic chain. From the graph we observe the evolution from a spherical 

potential (N=5, 6), where minimum is found at  𝛽 = 0 to potentials with well deformed minma  

(𝑁 > 8) . For intermediate (N=7, 8) the surfaces display the typical flat. bottomed curve expected at 

the critical points. 

An analysis with catastrophe theory shows that the values of the essential parameters r1,r2 for Ra 

isotopic chain which exhibit a transitional region between the U(5) and Su(3) is characterized by a 

straight line illustrated in Figure (6). The numerical values of r1, r2 are listed in Table (1). The dotted 

line in Figure (6) join the two pure dynamical symmetry limits U(5) and Su(3). 
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Table1. The optimized fitted parameters A2, A3, A4 ,A0 (in KeV) for Ra isotopic chain. NB is the total number of 

bosons and r1, r2 are the essential parameters. 

Isotope NB A2 A3 A4 A0 r2 r1 
218Ra 5 3130.9487 -970.2070 4077.2872 -10.0100 0.38625 0.65907 
220Ra 6 2400.7965 -1455.3106 3820.3044 113.6175 0.55548 0.50971 
222

Ra 7 1177.2302 -2037.4348 3164.5412 279.1215 0.79095 0.30187 
224Ra 8 436.1500 -2716.5490 3085.8980 486.502 0.94726 0.16391 
226Ra 9 -1263.0447 -3492.7454 2143.7746 735.759 1.25851 -0.11056 
228Ra 10 -3594.9525 -4365.9318 663.5711 1026.8925 1.77401 -0.56571 
230Ra 11 -4972.5748 -5336.1388 232.2874 1359.9025 1.96284 -0.73247 

P
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Figure (1) PES for U(5)-Su(3) transition in the large N limit and ignoring the contribution of the body 
terms of quadrupole-quadrupole interaction for different λ values as a function of the deformation 

parameter β. 

 

 

Boson Number (NB) 

Figure2. Evalution of excitation energy of the first 2+ level and energy ratio 𝐸(41
+)/𝐸(21

+) as a function of the 

boson number NB in the isotopic chain of Ra. 

  
 

L 

Figure3. Comparison of the ratios 𝑅𝐿,2 = 𝐸(𝐿1
+)/𝐸 21

+  of the ground state bands in U(5), X(5),Su(3) 

prediction with the IBM calculations for  (a) 218,220Ra  (b)222,224Ra  and   (c) 226,228,230Ra 

 
Figure4. Comparison of the BI+2,2 ratios of the ground state band in 224Ra (NB=8) compared to the U(5) and 
Su(3) predictions. 
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Deformation parameter (β) 

Figure5. PES ,s E(β) in terms of the deformation parameter for Ra isotopic chain with boson number varying 
from N=5 to N=11 to describe the IBM U(5)-Su(3) shape phase transition. 

 

Figure6. Shape phase diagram for Ra isotopes in terms of the essential parameters r1 and r2. 
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8. CONCLUDING REMARKS 

The transition from the spherical U(5) dynamical symmetry to axially deformed prolate rotor Su(3) 

dynamical symmetry has been studied. The Hamiltonian describing this transition is the consistent-Q 

interacting boson model Hamiltonian depending on a control parameter λ and structure parameter χ , 
that leads to the potential energy surface (PES) by using the intrinsic coherent state formalism. We 

have analysed the critical points of the shape phase transitional region U(5)-Su(3) in the space of the 

control parameter λ by the variation of boson number. The essential parameters r1 and r2 have been 
extracted in terms of the coefficients appearing in the PES and used to classify the equilibrium 

configurations. The IBM calculations and the symmetry limits are represented in the r2-r1 plane. Our 

model has been applied to the even-even Ra isotopic chain. For each isotope a general fit is performed 

to get the PES coefficients. As a result, we find that 
222

Ra and 
224

Ra are the best candidates to be 
critical and close to the critical point symmetry X(5). To identify the shape phase and their transitions 

we examined the fluctuation in the energy ratios and the ratios of the E2 transition rates. 
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