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1. INTRODUCTION 

In longitudinal studies, participants are 

followed-up, and patient’s information is 

collected repeatedly. In such studies, individuals 

may experience multiple events, and 

longitudinal failure time data is captured. In 

such studies, the most commonly used 

approaches are the deterministic and stochastic 

models (1). Deterministic models assume that 

response variables are deterministic functions of 

time disregarding the randomness of the risk 

factors completely while stochastic models 

assume that the response variables are random 

functions of time with probabilities of moving 

from one state to another (2). Stochastic models 

are more realistic than deterministic models 

since nature is predominantly random; however, 

statistical models with a stochastic approach are 

more complex and challenging than those 

involving deterministic approach (1,3). 

Multistate models are defined as a continuous-

time stochastic process which allows 

participants to move among a finite discrete 

number of compartments or states which could 

be clinical symptoms, biological markers, 

disease stages or disease recurrence in 

biomedical researches (4,5). Movement from 

one state to another is called a transition (event 

has occurred); states can be transient (if a 

transition can emerge from the state) or 

absorbing (if no transition can emerge from the 

state. Movement between transitions can be 

reversible or irreversible, and these movements 

contribute to the intricacy of the multistate 

model in addition to the number of states 

defined.  The transition intensities (hazard rates) 
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Abstract: There are numerous fields of science in which multistate models are used, including biomedical 

researched and health economics. In biomedical studies, these stochastic continuous-time models are used to 

describe the time to event life history of an individual through a flexible framework for longitudinal data 

which can describe more than one possible time to event outcomes for a single individual. The standard 

estimation quantities in multistate models are transition probabilities and transition rates which can be 

mapped through the Kolmogorov-Chapman forward equations. Most multistate models assume the Markov 

property and time homogeneity; however, if these assumptions are violated an extension to non-Markovian 

and time-varying transition rates is possible. This manuscript extends reviews in various types of multistate 

models, assumptions, methods of estimations, data types and emerging software for fitting multistate models. 

We highlight strengths and limitations in multistate models for different software and emphasis is made on 

Multistate Bayesian models in Bayes X and Win BUGS software which are underutilized.  A partially 

observed and aggregated dataset from the Zimbabwe national ART program is used to illustrate the use of 

Kolmogorov-Chapman forward equations in estimating transition rates from a three-state reversible 

multistate model based on viral load measurements in Win BUGS.  
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provide the transition specific hazards for 

movement from one discernable state to another. 

These transition intensity functions can also be 

used to compute the mean sojourn time (the 

average time spent in a single state before 

death), total length stay in a state (total time 

spent in a state before making a transitions), the 

number of transitions made from start to end of 

study and the transition probabilities (6). Also, 

the effect of covariates on each transition can be 

assessed (7); however, the effects of the 

covariates on the different transitions may not 

be the same since the severity of the disease 

progression differs by each intermediate state. 

There are different types of multistate models 

which can be used to answer a different research 

question, Figure 1.  

 

Figure1: Schematic illustration of different types of multistate models 

The mortality model for survival analysis with 

only two states and one transition from “alive” 

state to “dead” state is the simplest multistate 

model, Figure 1A.  These mortality models are 

useful, mostly in answering etiological research 

questions (8). The hazard rates are usually 

estimated using a semi-parametric approach 

which has a less stringent assumption (9). The 

hazard function is assumed to be an arbitrary, 

unspecified, non-negative function of time (10). 

The incidence or hazard rate is estimated by 

assuming independence of survival times 

between distinct individuals in a sample and a 

constant hazard ratio regardless of time (9). 

Another type of multistate model is the 

competing risks model which extends the 

mortality model depicting a scenario whereby 

an individual may experience one of the several 

failure outcomes (11,12), Figure 1B. In such 

model, competing risk analysis whereby the 

interest is in the occurrence of primary outcome 

but have other contesting events which may 

preclude the occurrence of the primary outcome 

or significantly alter the chances of observing 

the primary outcome; or situations where the 

different types of events may be relevant, but 

the analysis focuses on both time and 

occurrence of the first event (13).  The reason 

why the competing risk analysis is considered to 

be appropriate over the Kaplan-Meier estimation 

in such situations described above is that the 

Kaplan-Meier estimation treats the competing 

events as censored observations which bring in 

bias since the independence assumption is 

violated. The baseline hazard may differ 

between these competing events (14). The 

competing risk model also provides an in-depth 

insight on the effect of interventions on separate 

outcomes observed are also useful in exploring 

the relationship between explanatory covariates 

and the absolute risk which is critical 

particularly in decision-making and prognostic 

research work (8).  

Partitioning the “alive” state of the mortality 

model into two or more transient (intermediate) 

states yields another type of a multistate model 
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known as the disease progressive multistate 

model of which the simplest is the three-state 

model (5), Figure 1C. In biomedical research, 

illness-death models or disability models which 

are a special type of a disease progression 

model, are usually used in estimating disease 

incidences and the mortality transition 

intensities (15).  The disability model is 

considered in irreversible models when the 

disease increases the risk of death. In scenarios 

whereby the absorbing state is not considered,  

the K-progressive models which follow a 

sequential process (15) for instance health, mild, 

moderate and severe sequence or the fertility 

model which is used to describe the reproductive 

life history of a woman, Figure 1D, where each 

state is defined by the number of children born 

are commonly used.  Application of multistate 

models is not limited to biomedical studies like 

the evaluation of disease progression patterns 

(16–18) but cuts across various life history data, 

including health economics. In health 

economics studies inclined to the monitoring of 

disease progression, issues on the cost-

effectiveness of prevention strategies(19), 

treatment (20), and diagnosis intervention (21) 

to inform policy decision-making process(22) 

can be addressed using multistate models.  

There is an extensive review of multistate 

models in the literature. However, most review 

papers on multistate models have focused on the 

frequentist or maximum likelihood estimation 

(MLE) approach within the multistate model 

framework (4,5,7). None of these reviews has 

discussed Bayesian estimation (BE) within the 

multistate models, which is equally a robust 

method in multistate statistical modelling. 

Therefore, this article aims to extend previous 

reviews on multistate models with primary 

emphasis on Bayesian inference in multistate 

models. The rest of the manuscript is structured 

as follows: Section 2 will highlight the different 

assumptions within multistate models’ 

framework, multistate models data features and 

contrast between MLE and BE methods with 

their associated software packages; Section 3 

will provide a detailed illustration of using 

Kolmogorov-Chapman forward equation on 

viral load aggregated data; Section 4is left for 

discussion and conclusion. The appendix section 

provides details information for Section 3 and 

the WinBUGS code used. 

2. MULTISTATE MODELS  

2.1. Assumptions 

A flow chart for multistate model assumptions, 

methods of estimation, possible censoring patterns 

and covariates types is shown in Figure 2.  

 
Figure2: The multistate model assumptions, estimation types and possible covariates flow chart 
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Multistate models can either be fitted assuming 

discrete-time or continuous-time. In discrete-

time models, the movements between states 

occur at a fixed time, and the transition 

probabilities are usually reported while in the 

stochastic continuous-time models the 

transitions can occur at any time point, and 

transition rates are standard estimates (23). In 

biomedical studies, the continuous-time model 

reflects reality since the transition occurs at 

random.  

Different assumptions can be made on 

multistate models about the dependency of the 

hazard rates (transition intensities) on time. The 

Markov property assumes that the transition to a 

future state is only dependents on the present 

state occupied not the ones before; hence, the 

model has a “memory loss”. This type of model 

is usually used because of its simplicity (24). 

Alternatively, multistate models can assume a 

semi-Markov process meaning that the next 

future transition depends on both the currently 

occupied state and also the time of entry into the 

current state. The semi-Markov model is 

considered flexible in most cases; however, 

there are some drawbacks in using this model. 

Firstly, the semi-Markov model contains many 

parameters which make the model much more 

problematic to fit and the distribution of the 

sojourn times in each state is a requirement 

which in most instances might be unavailable 

(7,18,25,26). Lastly, multistate models can 

assume a non-Markovian process. This model is 

dependent arbitrarily on the previously occupied 

states; hence, there is no “memory loss” in the 

model. The implementation of non-Markovian 

models has been challenging until the 

introduction of the “Markov-free” estimators for 

transition probabilities in the last decade (4).  

Another assumption normally made in the 

multistate model is that of time homogeneity.  In 

a time-homogeneous model, the transition 

intensities are assumed to be constant over time; 

that is, the rates are independent of time 

(4,25,27).  In such models, the Kolmogorov 

differential equations can be solved explicitly 

using the decomposition of the transition matrix 

into both eigenvalues and eigenvectors (23). 

Models which assume time homogeneity used 

more often possibly due to well-developed 

software at disposal and their less intimidating 

theoretical framework.  However, if time 

homogeneity assumption is violated, an 

inhomogeneous time model is used which 

assume that the transition intensities change 

with time (27).  

2.2. Data Features 

Multistate models can be characterized by the 

way the data has been captured in a research 

process. Censoring is a crucial feature in time to 

event data analysis (28).In observational studies, 

follow-up studies often end before the outcome 

occurs leading to right-censoring of observation 

times (29) while left-censoring occurs when the 

study begins after the event has occurred but the 

event times are unknown (28). Frequently, non-

informative censoring occurs when participants 

are follow-up intermittently such that the period 

between visits is missing. This means that the 

transition times are not precisely observed, and 

the states occupied between follow-up time 

points are unknown. These non-informative 

censoring observations are considered to be 

interval-censored (28). The mechanisms which 

give rise to censoring are essential in statistical 

inference within the multistate framework, and 

these data features need to be taken into account 

during analysis to avoid getting biased estimates 

since their likelihood functions will be different 

(30).    

Moreover, intermittent follow-up of participants 

leads to incomplete spaced data points. 

However, most studies have placed focus on 

fully observed complete case data. In instances 

where data is missing (missing at random 

(MAT) or missing not a random (MNAR)), the 

multistate model framework allows one to use 

the likelihood-based method for missing 

covariates assuming a continuous-time Markov 

multistate model (31). However, if any 

covariates are missing, convergence problems 

are more likely with this method.   

Multistate models can also be implemented in 

scenarios where the disease history of the 

individual is incomplete. This arises when 

participants are observed intermittently for a 

short time, not to completion of their disease 

history. In such follow-ups, other visits are 

missed, and the specific time of occurrence of 

an event is unknown. Work by Kalbfleisch and 

Lawless equips one to fit a time-homogeneous 

Markov model with arbitrary transitions 

structure for such incomplete history data (31).  

Besides, within a multistate model, the follow-

up data might be partially observed, that is, only 

the initial state and the final state information in 

known but the intermediate experiences are 
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unknown. This happens typically in program 

data was that the data is usually reported and 

summarized in an aggregated format. 

Nonetheless, this data can be used within a 

multistate framework using the method 

proposed by Welton (2005) on handling 

partially observed aggregated data to estimate 

transition rates (32).  

2.3. Statistical Inferences and Software 

2.3.1. Frequentist (Maximum Likelihood 

Estimation) Perspective 

The frequentist approach has been well 

documented in the literature (4,5). This method 

strongly relies on the dataset for parameter 

estimation. In these models, the statistical 

inference and estimation of the transition rates 

are based on MLE, and some detailed 

theoretical steps behind this approach have been 

provided in Appendix A of the supplementary 

material. There are various software and 

packages which can be used to handle MLE 

multistate models. The commonly used free 

software and package is R  (33) msm package 

(34). The msm package can fit continuous-time 

Markov models (homogeneous time or non-

homogenous time using the piecewise constant 

models) and hidden Markov multistate models 

with misclassification error (6). Within the msm 

package, covariates can be included, graphs can 

be obtained, all data censoring types can be 

handled, the total length of stay in a state can be 

estimated, and model diagnostics can be done 

(6). In these models, the likelihood ratio test 

(LRT) is used to choose a better fit model 

between time-homogeneous and time non-

homogeneous (piecewise constant) models (4). 

The goodness-of-fit (GOF) of the model is 

assessed by comparing the observed and the 

predicted number of individuals in each state at 

a specified time (4). The other test is the 

Pearson-type test which tests if the transition 

rates depend on several predictors which can be 

applied to all multistate Markov processes, 

including those with an absorbing state (4). 

The other library within R software is the 

tdc.msm library developed by Meira-Machado et 

al.  (2009) which can fit five different multistate 

models including time-homogeneous and non-

homogeneous Markov multistate models; and 

Cox Markov and Cox semi-Markov multistate 

models (4). The tdc.msm library is a 

comprehensive package for modelling multistate 

longitudinal data since different models can be 

fitted within one library and model comparison 

can be done easily (4). For non-parametric 

estimation, the msSurv library within R can be 

used to estimate state occupation probabilities, 

initial and exiting time in a state, and the 

marginal integrated transition rate for the non-

Markov multistate process (35). The other R 

package is the mstate developed by Wreede et 

al. (2011) for both the competing risk models 

and multistate models (36). Additional R 

libraries are the etm library Allignol et al. 

(2011) for empirical transition probabilities and 

the change LOS (change length of hospital stay) 

library introduced by Wangler et al. 2006) for 

the Aalen-Johansen Estimator is implemented 

within R software. The limitation of the change 

LOS library is that it does not support the 

inclusion of covariates in the multistate model 

and left truncated data (37). However, the mvna 

library can handle both left truncated and right 

censored multistate data (37).   

The STATA software (licensed for use) (38) can 

fit the MLE multistate models using the 

multistate model ado files developed by 

Cowther and Lambert (2016) which restructures 

and declares the multistate data as survival and 

any survival model within STATA can be used 

(39). This package can estimate each transition 

rate by its unique model structure, assuming 

either a Markov or semi-Markov process (39). 

Uniquely to the STATA models is the ability to 

estimate each transition rate assuming different 

hazard functions which best fit the transition as 

compared to the R msm models which assumes 

the same hazard function on all the model 

transition processes. Another option in STATA 

is using ill prep and stpm2illd commands which 

can perform a similar analysis as described 

elsewhere (40). 

2.3.2. Bayesian Perspective 

The BE approach is a flexible method that gives 

posterior transition estimates from both the 

likelihood of data and the additional prior 

information for the unknown parameters (41). 

Multistate models fitted within Bayesian 

framework have not been fully implemented 

compared to the MLE models; however, BE 

multistate models are much more flexible and 

can handle most of the data features with are not 

possible with the MLE multistate models.  

The BE multistate models features vary with the 

type of software used. Free BayesX software 

can handle multistate models using the bayesreg 

object (42).  An illustration of these models was 

given by  Kneib et al. (2008) for a continuous-
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time semiparametric Markov model and was 

first demonstrated on human sleep data (43). 

These models are emerging and have been 

recently used on the rheumatoid disease 

progression (44) and HIV disease progression 

(Matsena Zingoni et al.- accepted paper) which 

is the first paper to include the spatial effects 

within BE multistate models framework. The 

hazard rates are estimated in a multiplicative 

Cox-type way with the baseline hazard rate 

simultaneously estimated on a log scale with the 

other predictors (43). Both empirical Bayes 

approach which treats unknown hyper-

parameters as constants and the fully Bayes 

approach which provides priors to all unknown 

parameters in the model can be implemented 

(43).  

The strength of BE multistate models within 

BayesX is their ability to flexible predictor can 

handle covariates with time-varying effects, 

non-linear covariates effects of continuous 

covariates using penalized splines, non-

parametric baseline effects and parametric 

effects of fixed covariates (45).  The MLE 

multistate models fitted within R msm library 

assume that the functional form of the effects of 

predictive factors is linear by default (or log-

linear) which might not be the case always. This 

restricts the assessment of non-linear effects on 

the transitions rates using frequentist multistate 

models since violation of this assumption may 

lead to inaccurate statistical conclusions, the 

increased bias in estimates and decreases 

statistical power for statistical significance tests 

(6).  However, BE multistate models can fit 

these non-linear effects of continuous covariates 

using penalized splines. Another strength of the 

BE multistate models if the ability to account 

for frailty terms to explain unobserved 

heterogeneity in the collected information either 

at the individual level or spatial level which R 

msm library cannot do (45).  

For instance, in HIV disease progression model, 

it is vital to account for individual-level 

heterogeneity to estimate transition rates since 

patients respond differently to ART treatment, 

and these transitions may also vary by location. 

Despite all these strengths associated with BE 

multistate models within BayesX, it is still 

challenging to perform the model comparison 

using the deviance information criterion (DIC). 

However, one may do a prior sensitivity to 

validate the model by varying prior estimates 

then check for any changes in the posterior 

estimates (coefficients or splines) of the 

transition rates (45).  

The Windows version of Bayesian inference 

Using Gibbs Sampling (WinBUGS) is another 

software which can be used to fit multistate 

models (46). Not only does the WinBUGS 

platform handle individual data but also 

aggregated data. Fitting multistate models in 

WinBUGS makes use of the Kolmogorov’s 

forward equations transcription into a code to 

estimate the transition probabilities and rates of 

the multistate model (32). A limitation of the 

WinBUGS multistate model could be explicitly 

solving for the Kolmogorov’s forward equations 

solution to be able to transcribe the solutions 

into the model code. This exercise becomes 

hectic and tedious if the model has many 

transitions some of them being reversible, that 

is, a complex multistate model; however,  the 

WinBUGS Differential Interface (WinDiff) 

software can be used instead (32). An 

illustration of this type of multistate modelling 

approach in WinBUGS is given in detail in 

Section 3. 

2.3.3. Software Challenges in Statistical 

Modelling 

There are strengths and limitations associated 

with each software type which handles 

multistate models, some of which might not 

have been discussed in detail in this review. 

Firstly, most of the existing software assumes 

the Markov property and time-homogeneous by 

default which makes it difficult if these 

assumptions are violated. Secondly, the Markov 

assumption can be difficult to test, and in most 

cases, studies are silent on pre-model 

assumption testing of the Markov property; 

however, markovchain library implemented in R 

is one of the packages which can test for 

Markov property (47). Thirdly, not all software 

types are freely available for use like BayesX, 

WinBUGS and R, some of the software types 

require a license to be granted access, for 

instance, STATA and SAS. Fourthly, data 

argumentation (structure) is different in each of 

the software, which may be a major drawback if 

one wishes to make comparison across software. 

In addition to this, at times convergence is an 

issue in multistate models depending on the size 

of the data, the model complexity of the 

proposed model (number of states, reversible 

transition and number of covariates included) 

and the preferred method of estimation (BE or 

MLE) as the models may take much longer 
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(hours or days) to converge or may fail to 

converge at all. Lastly and most importantly, the 

result outputs vary moving from one software 

package to another; hence, methodological 

background theory for each package is crucial to 

enable results comparison.  For instance, in the 

R msm library, one gets the exact transition rate 

values which can be interpreted directly while in 

BayesX outputs, the estimates are based on the 

flexible predictor on a log scale (43).   

3. ILLUSTRATION OF THE KOLMOGOROV-

CHAPMAN FORWARD EQUATIONS  

In this example, we implemented the method for 

estimation transition rates using partially 

observed data explained elsewhere (23); 

however, our illustration is based on a three-

staged reversible multistate model with states 

defined based on viral load measurements as 

shown in Figure 3. In this model, individuals 

from State 1 (suppressed viral load) may die 

(State 3) via State 2 (unsuppressed viral load) or 

directly from State 1. Again individuals may 

move backwards to State 1 once they are in 

State 2 (reversible transition). 

 

Figure3: The schematic presentation of three states partially observed the multistate model and the 

corresponding individual-specific transition intensities (State 1= Viral load <50copies/mL; State 2= Viral load 

≥50copies/mL) 

In general, the transition rates and transition 

probabilities are mapped using the Kolmogorov-

Chapman forward equation, which has the 

following solution:  

    
0

exp  
!

n
n

n

t
P t Q t Q

n





                   (1) 

where  P t  is the transition probability matrix, 

 Q t  is the transition rate matrix and the 

number of observed transitions is defined by n  

while t  defines the time. Let jk be the 

transition rate elements within the 3x3 matrix, 

the flow rate from a defined state j  be j , for 

instance,  1 12 13    ; therefore, the 

transition rate matrix is defined as: 

  

 

 
12 13 12 13 1 12 13

21 21 23 23 21 2 23

0 0 0 0 0 0

Q t

      

      

     
   

       
  
  

 . 

whose row totals sum to 0. Since State 3 is the 

absorbing state, the last row entries are equal to 

zero. With the  Q t  matrix, the Kolmogorov-

Chapman forward equations solutions defined in 

equation (1) can be used to map the  P t  

matrix which has the transition probability

 jk t  elements, that is, 

 

     

     
11 12 13

21 22 23

0 0 1

t t t

P t t t t

  

  

 
 

  
 
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where the row totals equal to 1. To fully define 

each  jk t component of the matrix, we 

modified slightly the solutions given elsewhere 

(32) to get comparable estimates to those 

obtained in R using msm library, assuming one 

has individually observed data. We considered 

this as a sensitivity approach to validate proper 

transcription of the code in WinBUGS. Let 

 
2

1 2 12 21 1 12 13 2 21 234  for  and h                  and

       1 2 1 2

1 1
1 exp 2  and 2 exp 2

2 2
e h t e h t   

   
              

   

.  

Then the Kolmogorov-Chapman solution for 

each  jk t  element is simplified to: 
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In this example, we assumed a time-

homogeneous Markov model and the data were 

aggregated having been observed over two-time 

points in a single year follow-up. This means for 

each individual, the initial state at ART 

initiation and the final state a year later at the 

end of follow-up is known but the route to the 

last observed state after a year is unknown. This 

means virally suppressed individuals (State 1) at 

time 0 who later died after a year of follow-up 

may have died directly from the State 1 or may 

have died via State 2 (unsuppressed viral load). 

This type of data is said to be partially observed 

since the intermediate transitions are unknown. 

The used aggregated data is displayed in Table 1.  

Table1: Partially observed data for viral load suppression among adult ART patients from the Zimbabwe 

national ART program after a year time cycle for a three-state model 

 Number of participants at 

baseline 
Initial state, j  Final state after a year of follow-up, k  

State 1 State 2 State 3 

2490 State 1 2269 143 78 

3106 State 2 137 2882 87 

0 State 3 0 0 0 

Totals 5596  2406 3025 165 

Let jkx  be the number of transitions, which is 

equal to the number of individuals over states, 

observed after a year from state j  to k  for j k

.  Since we employed the Bayesian inference, 

the likelihood function of this data was assumed 

to follow a multinomial distribution with 

probabilities: 

   ,1 ,2 , ,1 ,2 ,, ,..., Multinomial , ,..., ;j j j m j j j m jx x x n    (3) 

The priors were assumed to be non-informative 

exponential priors for the unknown transition 

rate parameters 12 13 21 23, , and     with parameter 

values 0.001   We also performed a prior 

sensitivity by varying the prior distributions for 

the transition rate to follow a Gamma 

distribution with a parameter of 0.1 for both the 

shape and scale.  However, the estimates were 

not similar meaning the choice of prior 

distribution did not influence the posterior 

transition rate estimates. 

   expjk jkP                                (4) 

The Bayesian MCMC method was implemented 

in WinBUGs. We set 10,000 MCMC 

simulations after a burn-in period of 1,000 

simulations and thinning of 10. The code used is 

provided in Appendix B, and this code may be 

viewed at the transcription of  P t  matrix each 

element fully defined (Equation 2), the 

likelihood function (Equation 3) and prior 

function (Equation 4). The posterior distribution 

fitted is given by Equation (5) below:

 
 

 
1

1

, / exp
1

j m
j

jk jk j jk j jk

jjj

x

P x x
x

    


  
   
      

   
 
  






                               (5) 
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The posterior estimates are shown in Table 2.  

Table2: Posterior estimates and correlations for the transition rates for the three-state model using partially 

observed data from the adult ART patients in the Zimbabwe national ART data after a year of follow-up. 

 

Parameter 

Parameter estimates Correlations 

Mean estimate 95% Credible interval 
12  13  

21  
23  

12  0.0633 0.053 to 0.074 1.0 0.068 0.124 0.0985 

13  0.0323 0.026 to 0.040  1.0 0.121 0.046 

21  0.0485 0.041 to 0.056   1.0 0.015 

23  0.0285 0.023 to 0.035    1.0 

Since this data is partially observed, there is 

uncertainty as to the exact route, an individual 

who reached State 3 followed. However, there 

are four possibilities to describe this: 

 Participant arrived directly from State 1 

having not visited State 2 during the follow-

up period (State 1 to State 3) 

 Participant arrived directly from State 2 

having not visited State 1 during the follow-

up period (State 2 to State 3) 

  Participant arrived from State 2 via State 1 

(State 1 to State 2 to State 3 

  Participant arrived from State 1 via State 2 

(State 2 to State 1 to State 3) 

However, the correlations between the transition 

rates are positive, which means the data on 

reaching State 3 is compatible with an increase 

in each of the transition. This is also evident in 

the bivariate scatter plots for these four 

transitions in Appendix C. The transition from 

State 1 to State 2 was 0.0633 (95% incredible 

interval (CI): 0.053-0.074), and this was 

statistically significant and was the highest 

observed rate. 

The transition probabilities are shown in Table 3 

for the three-cycle times, 3 months, 6 months 

and 1years cycles.  

Table3: Posterior estimates for the transition probabilities during three months, 6months and a one-year cycle 

for the three-state model using partially observed data from the adult ART patients in the Zimbabwe national 

ART data after a year of follow-up. 

Parameter 3 months 6 months 1 year 

Mean 

estimate 

95% Credible 

interval 

Mean 

estimate 

95% Credible 

interval 

Mean 

estimate 

95% Credible 

interval 

 11 t  0.9765 0.973 to 0.980 0.9530 0.945 to 0.960 0.9103 0.898 to 0.922 

 12 t  0.0155 0.013 to 0.018 0.0302 0.026 to 0.036 0.0580 0.048 to 0.068 

 13 t  0.0081 0.006 to 0.010 0.0160 0.012 to 0.020 0.0318 0.026 to 0.039 

 21 t  0.0119 0.010 to 0.014 0.0231 0.019 to 0.027 0.0442 0.037 to 0.052 

 22 t  0.9810 0.979 to 0.983 0.9626 0.958 to 0.967 0.9273 0.918 to 0.936 

 23 t  0.0071 0.006 to 0.009 0.0142 0.011 to 0.017 0.0285 0.023 to 0.035 

From these estimates, the probability of leaving 

the initial state increases as the cycle time 

increases, that is, for a transition from State 1 to 

State 2, the probability at 3 months cycle was 

smaller than the probability at 6 months cycles, 

and both were smaller than the probability at 1-

year cycle: (  12 3t months   =0.0155<

 12 6t months  =0.0302<  12 1t year 

=0.058). This pattern was similar across other 

transitions and was as anticipated for such types 

of models. 

4. DISCUSSION  

In this manuscript, we have discussed the 

various types of multistate models disposable to 

use in different science fields to answer different 

kinds of research questions from longitudinal 

time to event data. The advantage of multistate 

models is the ability to draw schematic diagrams 

of mutually exclusive states which help to 

understand the model better. We have 

highlighted different assumptions for multistate 

models, existing software which can implement 

multistate models, strength and weaknesses of 

these software.  

We have also discussed two methods of 

statistical inference with emphasis on Bayesian 

estimation, which has not been fully utilized in 

the literature. We also put forward the strengths 

of BayesX multistate model, that is, the ability 

to handle spatial, non-linear covariates effects in 

addition to adjusting for individual 
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heterogeneity which models from other software 

cannot do and WinBUGS models which can 

handle aggregated data.  

This manuscript further put forward the 

advantage of using a multistate modelling as this 

approach may bring out new and important 

biological insights in understanding the 

intermediate processed of a disease which 

ordinary regression models like Cox 

proportional hazard model may be ignoring. We 

have also used the Kolmogorov-Chapman 

forward equations on a new dataset on viral load 

measurement in HIV studies. This method 

affirms how important aggregated data could be 

in instances where there is no individual-level 

data. This becomes more important as it lays the 

foundation on the importance of collecting 

individual-level data and further research 

formulations. However, this method needs to be 

improved so that it covariates effects on the 

aggregated transition rates can be accounted for. 

The advantages of Bayesian inference over the 

frequentist perspective is that the Bayesian 

approach is theoretically simpler, more robust, 

more flexible and easier to implement with 

minimum support (1). Though Bayesian 

estimation can give comprehensive posterior 

estimates of the transition rates, these models 

are generally computationally intensive since 

they require more time (hours or days) to 

converge. Despite requiring technical expertise 

in fitting the model to achieve convergence and 

make the correct inferences; the main 

disadvantage of Bayesian models in the 

specification of the priors, which is normally 

subjective. This is quite a debatable issue in 

Bayesian modelling since the observed posterior 

estimates are heavily dependent on the prior 

specification, especially for informative prior 

choices.  However, to override this argument, 

assigning diffuse (vague/non-informative) priors 

is encouraged, and results are comparable with 

the frequentist estimates(32,43). Also, prior 

sensitivity analysis is encouraged as an excellent 

modelling courtesy to validate that the choice of 

the prior used does not influence the results 

obtained.  

In conclusion, multi-state modelling offers a 

flexible tool for the study disease progression 

and estimate transition rates using various forms 

of assumptions, data and estimation methods. 

Multistate models bring out significant disease 

progression understandings which the traditional 

naïve regression models may ignore.  Therefore, 

multistate models should be used as a 

supplement to the traditional naïve regression 

models to gain additional information. 
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5.  APPENDIX  

5.1. Appendix A: The Maximum Likelihood 

Estimation  

The transition rates of a multistate model can be 

estimated theoretically. Considering the three-

state model shown in Figure B1, the aim is to 

estimate the four transition parameters shown on 

the model. More a maximum likelihood 

estimation (MLE), the first step is to get the 

product of the distribution function of the 

parameters. Let the transition function be 

 
    , ,

,

exp
   for 

!

jkn

i jk i jk j

i jk

jk

t
f j k

n

 



 

  (5) 

where ,i jk if the transition rate from state j  to 

state k  for an individual i  . The number of the 

observed movements between the states is 

represented by jkn and t  is the total observed 

waiting time in the state j for j =1, 2. 

To get the likelihood function: 

 
    , ,

,

exp
  for , 1,2,3

!
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i jk i jk

i jk
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 
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 
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  (6) 
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Treating the factorial part in the equation as a constant and taking log both sides yields: 

         
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  (7) 

which simplifies to 
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Re-arranging the terms gives 
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The summation of transition rates from the same 

state is defined at the flow rate, ,i j , which 

defines the probability of transition from the 

state j . This means: 

, ,i j i jk

j k

 


                                                 (8)

Let ,i jk  be the conditional probability that 

the next destination is state k  given that the 

transition from state j  to k  occurs. Then the 

flow rate can be defined in terms of the 

conditional probability as 

,

,

, ,

 for 
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Substituting equation (1.4) into equation (1.3) yields, that is,  1 1t =    ,12 1 ,13 1i it t     and 

 2 2t =    ,21 2 ,23 2i it t    : 
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The next step is differentiating equation (1.3) 

with respect to each transition rate in the 

equation: 

For transition ,12i  
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                                                                                    (9) 

Equating the solution to zero and solve to get 

the MLE of that transition yields: 

12
,12

1

î

n

t
 

                                                                                                                                           (10) 

Similarly, the other MLE for the other 

transitions becomes 

13 2321
,13 ,21 ,23

1 2 2

ˆ ˆ ˆ; ;i i i

n nn

t t t
    

 

From this working, if one knows the number of 

the transitions from state  j  to k  and the total 

exposure time in state j , the transition rates can 

be estimated using equation (6). Similarly, if the 

waiting time is unknown, the transition rate and 

the number of observation can give an estimate 

of the time.  

5.2. Appendix B: Winbugs Three State 

Reversible Multistate Model Code 

model { 

#Multinomial likelihood for observed data 

              for (i in 1:2) 

                    {r[i,1:3] ~ dmulti(P[i,1:3],n[i]) } 

#Find transition probabilities (for a given time) 

in terms of rates 

                h<- sqrt(pow(lambda[1]-lambda[2], 2) 

+ 4*G[1,2]*G[2,1]) 

                e1<-exp(-.5*(lambda[1] + lambda[2] - 

h)*t.obs) 

                e2<-exp(-.5*(lambda[1] + lambda[2] 

+ h)*t.obs) 

               P[1,1]<-((-

lambda[1]+lambda[2]+h)*e1+ (lambda[1]-

lambda[2]+h)*e2)/(2*h) 

               P[1,2]<-((-

lambda[1]+lambda[2]+h)*(lambda[1]-

lambda[2]+h)*(e1-e2))/(4*h*G[2,1]) 

               P[1,3]<-1 - P[1,1] - P[1,2] 

               P[2,1]<- G[2,1]*(e1-e2)/h 

               P[2,2]<- ((lambda[1]-

lambda[2]+h)*e1+ (-lambda[1] + lambda[2] + 

h)*e2)/(2*h) 

               P[2,3]<-1 - P[2,1] - P[2,2] 

#Give exponential priors for unknown transition 

rate parameters 

              for (i in 1:2) 

                   { 

              for (j in (i+1):3) 

                                       {G[i,j] ~ dexp(.001)} 

                   } 

              for (i in 2:2) 

                  { 

              for (j in 1:(i-1)) 

                                   {G[i,j] ~ dexp(.001)} 
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                   } 

 

lambda[1]<- G[1,2] + G[1,3] 

lambda[2]<- G[2,1] + G[2,3] 

#Find P(t.new) for a given new time of interest 

e1.new<-exp(-.5*(lambda[1] + lambda[2] - 

h)*t.new) 

e2.new<-exp(-.5*(lambda[1] + lambda[2] + 

h)*t.new) 

Pt[1,1]<-((-lambda[1]+lambda[2]+h)*e1.new+ 

(lambda[1] -lambda[2]+h)*e2.new)/(2*h) 

Pt[1,2]<-((-

lambda[1]+lambda[2]+h)*(lambda[1]-

lambda[2]+h)*(e1.new-e2.new))/(4*h*G[2,1]) 

Pt[1,3]<-1 - P[1,1] - P[1,2] 

Pt[2,1]<- G[2,1]*(e1.new-e2.new)/h 

Pt[2,2]<- ((lambda[1]-lambda[2]+h)*e1.new+ (-

lambda[1] + lambda[2] + h)*e2.new)/(2*h) 

Pt[2,3]<-1 - P[2,1] - P[2,2] 

}  

5.3. Appendix C: The bivariate transition 

rates scatter plots 

 

FigureA1: Bivariate scatter plots rates for the four transition rates parameters from the partially observed data 
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