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1. BACKGROUND 

According to the latest report of the 

International Diabetes Federation Diabetes Atlas 

[1]，415 million adults in the world have 

diabetes, corresponding to an overall incidence 

rate of 9.1%, and 318 million adults have 

impaired glucose regulation with a high risk of 

developing diabetes in the future. China is the 

country with the largest number of diabetic 

patients in the world. According to a published 

national survey, the prevalence of diabetes in 

China has increased dramatically over the past 

30 years: from less than 1% in 1980, to 5.5% in 

2001, and 9.7% in 2008. In the 2013 survey, it is 

estimated that the prevalence of prediabetes in 

China will reach 35.7%. [2]  

Advanced glycation end products (AGEs) are a 

series of stable and irreversible covalent 

compounds (such as carboxymethyl lysine, 3-

deoxy glucosanoic acid, pentosidine, pyrroline, 

glyoxal) produced by the reaction of the 

aldehyde groups of the reducing sugars with the 

free amino groups of the macromolecules 

(proteins, lipids, or nucleic acids, etc.) in non-

enzymatic conditions, involve\ing processes of 

condensation, rearrangement, cleavage and 

oxidative modification. [3]  

Several studies have shown that AGEs are 

involved in the occurrence and development of 
chronic complications of diabetes, 

atherosclerosis, uremia, Alzheimer's disease, and 

cataracts.[3-7] AGEs are important pathogenic 
factors in the pathogenesis of atherosclerosis [8], 

diabetes [9] , diabetic nephropathy [10], cataract 

[11] and neurodegenerative diseases (including 
Alzheimer's disease) [12] 

Unreasonable dietary structures, increased 

oxidative stress in the body, decreased 

deglycosylation ability, and long-term 
hyperglycemia can all lead to accelerated 

accumulation of AGEs. In the early stage of 

diabetes, excessive accumulation of AGEs in 
vivo and the interaction of AGE and its receptor 

RAGE can lead to apoptosis and necrosis of 

islet β cells, insulin resistance, and impaired 
glucose regulation.[13] In the middle and later 

stages of diabetes, the continuous increase in 

blood glucose can accelerate non-enzymatic 

chemical reactions in the body and produce 
more AGEs.  

Therefore, there is a higher level of serum AGEs 

in diabetic patients [14] and these excess AGE 
will accumulate in the body and attach to cells. 

The level of diabetic AGEs in the vascular 

endothelial cells, nerve cells, kidney tissue, lens 

and other body tissues is also higher than that in 
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the normal population. [14-17] AGEs can cause 
the development of diabetic complications 

through direct or indirect actions. 

2. AGES MECHANISM OF ACTION 

2.1. Three Main Mechanisms for AGE-

Mediated Tissue Effects 

 Cross-linking with extracellular (matrix) 

proteins affects the mechanical properties of 

tissues. [18] The formation and 
accumulation of cross-linked extracellular 

matrix proteins with AGE is a chronic 

process. Extracellular matrix proteins, 
especially the long-lived protein type IV 

collagens of basement membrane are more 

susceptible to glycosylation. [19, 20] 
Advanced glycosylation and cross-linking 

make other extracellular matrix proteins 

(such as collagen I and elastin) stiffer and 

less susceptible to degradation. [18] This 
mechanism may contribute to increased 

diabetes and vascular stiffness in the 

elderly. [18, 19, 21] The structure of low-
density lipoprotein (LDL) can also be 

altered by the glycation of AGE, preventing 

normal elimination pathways from 

removing them from the circulation. 
Instead, they are taken up by blood 

mononuclear cells to form foam cells, 

resulting in the development of 
atherosclerosis. [5, 22] 

 Cross-linking with intracellular proteins, 

altering the physiological properties and 

functions of the cells. [23, 24] For example, 

AGEs cross-link the domains of Ryanodine 

receptor [23] and SERCA2a [24] in 

cardiomyocytes, leading to altered calcium 

homeostasis in diabetic cardiomyopathy. 

[25, 26] 

 Binding to cell surface receptor RAGE to 

induce multiple intracellular signal 

transduction cascades. [27] It has been shown 

that there is a nuclear factor kappa B (NF-

kappa B) binding site on the promoter of 

RAGE gene, thus linking RAGE expression 

with the inflammatory cascade. [28]  

2.2.  RAGE 

RAGE is a multi-ligand receptor for AGEs. 

RAGE is upregulated in a ligand-rich 

environment of diabetes or aging. The 
expression of RAGE is even more elevated in 

monocytes, smooth muscle, and endothelial 

cells at the diabetic vasculature. [29] It has been 

shown that circulating AGEs bind to endothelial 

RAGE and activate many signaling pathways, 
such as activation of nicotinamide adenine 

dinucleotide phosphate oxidase leading to 

increased reactive oxygen species (ROS) 
production and impaired endothelial 

function.[30] ROS have been shown to play a 

key role in causing significant cardiovascular 

damage in diabetes by altering the structure of 
cellular nucleic acids, proteins, and lipids, 

thereby altering their physiological 

2.3.  sRAGE 

The interaction of AGEs-RAGE results in 

oxidative damage and the production of matrix 

metalloproteinases (MMPs), whereby cell-
bound RAGE is cleaved to produce soluble 

RAGE (sRAGE). [36] sRAGE competes with 

RAGE for RAGE ligands (AGEs, HMGB1, and 

S100b) through binding or trapping, thus 
reducing inflammation mediated by RAGE. [36, 

37] Studies have shown that RAGE signaling 

pathway is blocked by sRAGE, suggesting 
sRAGE as a potential therapeutic agent for 

preventing atherosclerosis.[38] To support this 

idea, the decrease in plasma sRAGE 

concentrations is a predictor of cardiovascular 
events and it is speculated that sRAGE may be a 

potential protective agent against vascular 

complications [39] 

3. AGES AND DIABETES 

AGEs are considered to be the main cause of 

different diabetic complications. [40] AGEs 
accumulate in most sites of diabetic 

complications including atherosclerotic plaque, 

kidney, and retina. [41] 

3.1. AGEs and Diabetic Nephropathy 

Diabetic nephropathy is characterized by the 

accumulation of ECM (extracellular matrix) 

proteins in the glomerular mesangium and 
tubulointerstitium. AGEs may induce 

imbalances in the metabolism of ECM 

components, resulting in increased accumulation 
of collagen, fibronectin, and laminin. [42] After 

AGE modification, the affinity of type IV 

collagen and heparan sulfate proteoglycans with 

laminin and fibronectin decreases. [43] The 
saccharification reaction inhibited the process of 

polymer self-assembly for collagen type IV and 

laminin. [44] Studies have shown that AGEs can 
stimulate angiotensin II (Ang II) type 1 receptor 

(AT1R) and induce DNA damage and partial 

detachment of podocyte. [45] These changes 

may be particularly pronounced in the 
glomerular basement membrane, where the 

induction of chemical cross-linking between 
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amines leads to increased protein permeability. 
[46] In cultured human mesangial cells, it has 

been demonstrated that soluble AGE containing 

carboxymethyllysine induces the upregulation of 
CTGF (connective tissue growth factor; also 

known as IGFBP-2) and fibronectin, [47] which 

may promote the occurrence of renal fibrosis .[48] 

3.2.  AGEs and Diabetic Peripheral 

Neuropathy 

RAGE is expressed in endothelial cells and 

Schwann cells of the perimysial and endoneurial 

vessels in rat peripheral nerves. A study showed 

that AGEs could cause death of neuronal cells 

and Schwann cells in vitro, resulting in changes 

in the structure and function of peripheral 

nerves.[49] In addition, neurofilaments and 

tubulin are modified by AGEs, which may 

interfere with axonal transport [50] and lead to 

the development of atrophy and degeneration of 

nerve fibers. AGEs-modified P0 protein may 

induce demyelization of nerve fibers. [51] 

Moreover, glycosylation of collagen and 

laminin alters the charge of basement membrane 

and leads to an increase in the permeability of 

blood vessels and thickening of the basement 

membrane. It has also been reported that AGEs 

can quench the vasodilatory mediator nitric 

oxide (NO) [52] and inhibit the expression of 

NO synthase [53]，thereby reducing neuronal 

blood flow and inducing hypoxia in peripheral 

nerves. Furthermore, the interaction between 

AGEs and RAGE on the endothelial cells of the 

peripheral and intimal blood vessels promotes 

the development of peripheral neuropathy.[54] 

3.3. Ages and Diabetic Retinopathy, Cataract 

AGEs lead to various retinal cell dysfunction 

and death. [55] Some studies have shown that 

the accumulation of AGEs is associated with 
dysfunction of glial cells in rat diabetic retinal 

Müller cells. [56] RAGE upregulates the pro-

inflammatory response of retinal Müller glial 
cells. [57] AGEs can induce increased 

expression of ICAM-1 (intercellular adhesion 

molecule-1) in cultured bovine retinal 
endothelial cells and promote the reduction of 

diabetic retinal microvascular leukocytes.[58, 

59] Studies have shown an increase in AGEs 

formation in the vitreous in patients with 
diabetic retinopathy. AGEs induce the 

expression of VEGF (basic fibroblast growth 

factor) gene in retinal cells by stimulating IL-6 
secretion in human retinal Müller cells, inducing 

local hypoxia and increasing reactive oxygen 

species. [60] [61] This leads to increased 

mitogen and increased vascular endothelial 
growth factor (VEGF), which in turn stimulates 

neovascularization and induces proliferative 

retinopathy. [62] Local increases in VEGF 
concentrations are associated with increased 

vascular permeability. [63] In addition, recent 

studies have shown that AGEs are key 

regulators of non-proliferative retinopathy in 
patients with type 2 diabetes mellitus.[64] 

Therefore, AGEs are involved in the 

development of diabetic retinopathy. 

The severity of diabetic cataracts is related to 

the rate of AGEs accumulation. Long-term 

hyperglycemia leads to progressive 
saccharification oxidation of lens proteins. The 

accumulation and cross-linking of AGEs with 

external capsules gradually nucleizes the lens 

and increases the thickness and stiffness, 
promoting the formation and development of 

cataracts. In the lens, AGEs induce the 

aggregation of lens proteins, forming high-
molecular-weight aggregates that cause vision 

loss and astigmatism. [65] AGEs can also 

change the surface charge of proteins, resulting 

a conformational change that may subsequently 
affect the protein-water interaction and reduce 

the transparency of the lens. [66, 67] 

Saccharification of lens proteins may be induced 
by elevated levels of glucose in the aqueous 

humor, resulting in increased production of 

AGEs and superoxide radicals. [11]  

AGE-RAGE in the lens epithelium further 

increases the production of O2- and H2O2. [68] In 

diabetic patients, reduced anti-oxidation capacity 

of the lens leads to increased  level of free radicals 
and the sensitivity to oxidative stress. [69] 

3.4. AGEs and Diabetic Cardiomyopathy 

Mitochondrial membrane depolarization is 
associated with AGE-induced cardiomyocyte 

dysfunction. [70] AGEs increase the cross-

linking of matrix proteins such as collagen, 
laminin, vitronectin, and elastin. [71] As a 

result, matrix proteins have reduced pliable 

properties and become stiffer, which lead to 

decreased cardiac contractility and diastolic 
dysfunction. Increased cross-linking of collagen 

and elastin also leads to more ECM surface area, 

resulting in stiffer vasculature. [19, 72] Another 
pathway for diastolic dysfunction is activation 

of RAGE through AGEs. [73] In transgenic 

mouse models, over expression of human 

RAGE in the heart was found to reduce 
contractile and diastolic intracellular calcium 

concentrations. [74] AGEs may also promote 

the development of heart failure. [75] 
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3.5. AGEs and Diabetes Proinflammatory 

State 

AGEs have high affinity to cysteine in lysozyme 

and lactoferrin molecules, thereby reducing their 
antibacterial activity, which potentially 

contributes to the fact that the diabetic patients 

have declined anti-infectious abilities.[76] AGE-

RAGE interaction inhibits phosphatidylinositol 
3 (PI3) kinase activity, increases protein kinase 

C (PKC) activity and proinflammatory cytokine 

levels, and promotes diabetes mellitus 
inflammation state [77]. 

3.6. AGEs and Diabetic Macroangiopathy 

A large number of clinical studies have shown 

that AGEs are closely related to diabetic 

macroangiopathy. AGEs can impaire endothelial 

cell function and accelerate the progression of 

atherosclerosis.[78] AGEs reduce the release of 

vasoactive substances (such as NO, SDF-1, 

PGI2, tPA, etc.), promote apoptosis of late 

endothelial progenitor cells (EPCs) and inhibit 

their migration and adhesion.[79] Accumulated 

AGEs also accelerate atherosclerosis by cross-

linking endothelial matrix proteins leading to 

platelet aggregation and abnormal metabolism 

of lipoproteins.[80-82] Therefore, AGEs may be 

one of the pathological mechanisms of diabetic 

macrovascular complications.  

3.7. AGEs and Diabetic Bone Metabolism 

Abnormalities 

Patients with poorly controlled diabetes have 

increased AGE-modified collagen, affecting 

osteoblast differentiation and function in vitro, 

and leading to osteopenia [83] Through the NF-

κβ non-dependent mechanism, AGEs promote 

the apoptosis of human osteoblasts and 

mesenchymal stem cells, which further reduces 

bone formation.  

4. HYPOGLYCEMIC DRUGS AND AGES 

Hypoglycemic agents can be broadly classified 

into oral hypoglycemic agents and injectable 

hypoglycemic agents. [92]  Current oral 

hypoglycemic drugs commonly used in China 
include insulin secretagogues, metformin, α-

glycosidase inhibitors, thiazolidinedione 

derivatives, dipeptidyl peptidase 4 (DPP-4) 
enzyme inhibitors, and sodium-glucose 

cotransporter-2 (SGLT-2) inhibitors and the 

like. Among these drugs the insulin 

secretagogues are further classified into 
sulfonylureas and non-sulfoureas (glinides). 

Injectable antidiabetic drugs include insulin and 

similar drugs, and glucagon-like peptide-1 

(GLP-1) receptor agonists. They have different 
effects on AGEs in many ways.  

4.1. ɑ-Glucosidase Inhibitors 

In diabetic animals, since acarbose reduces the 
mean blood glucose area under the curve, the 

non-enzymatically saccharified protein and the 

formation of AGEs are reduced. [84, 85] 
Patients with type 2 diabetes treated with 

acarbose have reduced serum levels of 

glyceraldehyde-derived AGEs. [86] Acarbose 

treatment can significantly reduce the level of 
some inflammatory factors that are present in 

higher levels in diabetes patients than healthy 

individuals including AGEs. [87] In addition, 
acarbose has been shown to inhibit the 

formation of aortic collagen glycosylation in 

diabetic rats.[88]  

4.2. Glinides 

Glyceraldehyde reacts rapidly with the amino 

groups of proteins to form glyceraldehyde-

derived AGEs, causing vascular inflammation 
and endothelial dysfunction, and accelerating 

the atherosclerotic process in diabetic patients. 

Studies have found that nateglinide reduces 
glyceraldehyde-derived AGE levels in GK (Goto-

Kakizaki) rats after 6 weeks of treatment. [89] In 

ZF (Zucker fat) rats, an animal model of insulin 

resistance and obesity, studies have shown that 
combination therapy of nateglinide (NAT) and 

telmisartan (TEL) improves postprandial 

metabolic disturbances and mitigate insulin 
resistance, with reduced AGEs levels in serum, 

RAGE expression levels, and AGE-RAGE 

index, probably due to the suppression of the 
AGE-RAGE signal in the liver.[90]  

4.3. Thiazolidinedione Insulin Sensitizer 

Since thiazolidinediones have PPARγ agonist 

activity, they have been shown to play a role in 
anti-AGE therapy by upregulating sRAGE 

expression and being inversely related to 

atherosclerosis.[91] Circulating soluble RAGE 
(sRAGE) and endocrine RAGE (eRAGE) 

compete with RAGE to bind AGEs. Binding of 

AGEs to their receptors (RAGE) results in the 

production of oxygen free radicals, nuclear 
factor kappa-beta, pro-inflammatory cytokines, 

and cell adhesion molecules that are involved in 

the pathophysiological process of triggering 
cardiovascular disease (CVD). Rosiglitazone 

has been used to increase sRAGE levels.[92] A 

randomized placebo-controlled study of 111 
patients with type 2 diabetes and high-risk 

coronary heart disease who had undergone 

rosiglitazone in the year of 2013[93] tested 
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increased levels of sRAGE after 6 months of 
rosiglitazone treatment. The PPARγ agonist 

rosiglitazone can reduce AGE levels, improve 

arterial injury [94] , and mitigate AGEs-induced 
EPCs dysfunction.[95] In human neural stem 

cells (hNSCs) exposed to AGEs, two 

neuroprotective factors (Bcl-2 and PGC1α) are 

down-regulated, and inflammatory response 
factors (TNF-α and IL-1β), NF-κB (p65) and 

inflammatory genes (iNOS and COX-2) are 

upregulated. Aosiglitazone can rescue these 
effects in hNSCs via activation of PPARγ and 

inhibits the activity of caspase 3, thereby 

increases the viability of hNSC. This 
neuroprotective effect of rosiglitazone can be 

effectively blocked by a PPARγ-specific 

antagonist (GW9662), indicating that the above-

mentioned effects of rosiglitazone are mediated 
by the PPARγ-dependent pathway. [96]  

A study conducted in 2010[97] showed that 

pioglitazone significantly increased sRAGE 

levels in diabetic patients at 12 weeks of follow-

up. In the 24-week follow-up period of 

PioRAGE [98] trial, pioglitazone inhibited 

RAGE expression and increased plasma sRAGE 

levels, independent of plasma glucose or insulin 

resistance levels. In patients with type 2 

diabetes, pioglitazone treatment has a good 

overall efficacy by significantly affecting the 

level of serum adiponectin, AGEs, human 

normal T cells, and secreted factors RANTES, 

endothelin ET, and homocysteine Hcy. [99]  

4.4. Sulfonylureas Secretagogues 

One of the sulfonylurea derivatives, GP, inhibits 

ATP-dependent K + channels therefore can 

completely reverse the inhibitory effects of 

AGEs on ATP production and insulin secretion. 

[100]  

Gliclazide can reduce the expression of RAGE 
mRNA, which may have a protective effect on 

renal tissue damage in diabetic rats.[101] AGEs 

promote the binding of NF-κB to the motif at 
the VEGF promoter region in the bovine retinal 

capillary endothelial cells (BRECs), leading to 

the proliferation of these cells. Gliclazide blocks 
AGE-induced DNA binding activity of NF-κB 

and inhibits AGE-induced VEGF expression 

and PKC activation. Treatment with anti-VEGF 

antibodies or gliclazide inhibited the above-
mentioned cell proliferation effects.[102]  

AGEs significantly inhibited the expression of 

megalin and cubic protein, cubulin, and the 
uptake of albumin by HK-2 cells in vitro. In 

glomerular cells of GK rats, Gliconeone can 

inhibit the expression of RAGE and PKC-β, 
upregulate the expression of PKA, megalin and 

cubilin, promote the secretion of C-peptide, and 

increase the albumin uptake. Treatment with 
gliquidone alleviated the injury of glomerular 

basement membrane and podocytes, promoted 

renal tubular reabsorption, and effectively 

reduced urinary protein and proteinuria in 
diabetic nephropathy GK rats.[103] [104] 

Gliquidone also inhibited AGEs-induced 

expression and secretion of RANTE (regulated on 
activation, normal T cell expressed and secreted) 

in human mesangial cell (HRMC). [105]  

Glimepiride may reduce toxic glyceraldehyde-
derived AGEs (glycerol-AGEs) levels and 

increase colony-stimulating factors to 

potentially repair tissue damage. [106]  

4.5. Metformin 

MG (methylglyoxal) is the major precursor of 

AGE and is directly toxic to tissues. Metformin 

binds MG and inactivates it, reducing MG-

related AGEs. [107] Metformin inhibits the 

production and accumulation of AGEs, thereby 

inhibiting the development of adverse 

myocardial structural and functional changes. 

[108] AGEs-induced proliferation of VSMCs 

was inhibited by metformin. [109, 110] 

Thiazolidine-derived metformin reduces AGE 

levels in patients with polycystic ovary 

syndrome and reduces arteriosclerosis in young 

women with polycystic ovary syndrome. [111] 

Metformin can reduce the accumulation of 

AGEs and down-regulate the expression of 

RAGE in the kidney of diabetic rats.[112] 

Metformin inhibited AGEs-induced growth of 

SW-480 cells. [113] Metformin reduced the 

serum AGEs level in postmenopausal 

osteoporosis rats, which in turn improves bone 

metabolism. [114]  

4.6. Dipeptidyl Peptidase-4 Inhibitor 

Sitagliptin reduced the levels of RAGE and 

angiotensin II type 1 receptors in spontaneously 
hypertensive rats. [115] Sitagliptin significantly 

inhibited AGEs-induced viability of mesangial 

cells and downregulated the level of collagen IV 

(Col IV) in the supernatant, which may exert 
renal protective effects by causing autophagy of 

mesangial cells. [116] 

In db/db mice, cilizytin can downregulate serum 
AGEs, inhibit glycosylation in vivo and in cells 

cultured in vitro, and alleviate AGE-related 

diabetic complications. [117] Treatment with 
vildagliptin can downregulate the levels of 

AGEs, RAGE and oxidative stress marker 8-
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OHdG (8-hydroxydeoxyguanosine) in thoracic 
aorta of diabetic rats, and the above-mentioned 

increase in levels of substances with MCP-1 

(mononuclear) Cell chemokine-1), VCAM-1, and 
PAI-1 (type I plasminogen activator inhibitor) 

gene expression were associated with decreased 

expression. [118] Linagliptin significantly 

inhibited AGE-induced ROS production and 
downregulated the expression of RAGE, ICAM-

1 and PAI-1 genes in HUVEC cells [119], and 

reduced AGEs, RAGE gene expression, and 8-
OHdG levels in the kidneys of diabetic rats. [120] 

Another study found that alogliptin can block the 

AGEs-RAGE axis in patients with type 2 diabetes, 
thereby reducing proteinuria. [121]  

4.7. GLP-1 Receptor Agonist 

GLP-1 inhibits AGEs-induced RAGE gene 

expression, protein arginine methyltransferase-1 
(PRMT-1) gene expression and ROS 

production. [122] In addition, GLP-1 binds to 

RAGE and inhibits RAGE activation. [123] 
GLP-1 is also reported to inhibit AGEs-induced 

apoptosis of EC cells, increase the ratio of anti-

apoptosis Bcl-2/pro-apotosis Bax, downregulate 

cytochrome C levels, and inhibit caspase-3 and 
caspase-9 activities. [124] Moreover, recent 

studies have shown that GLP-1 can directly act 

on GLP-1R of ECs, which may play a role in 
anti-AGEs by reducing RAGE expression.[125] 

GLP-1 can reduce the levels of RAGE, ICAM-1 

(intercellular adhesion molecule-1) and VCAM-
1 (vascular cell adhesion molecule-1) in human 

retinal pigment epithelial cells. [126] 

Continuous intraperitoneal injection of the GLP-

1 analogue exendin-4 inhibits renal RAGE gene 
expression. [122] In rat mesangial cells RMC, 

PPARδ and GLP-1 receptor agonists 

significantly inhibited AGE-induced production 
of IL-6 and TNF-α, down-regulated AGE-

induced RAGE expression, and decreased 

mesangial cell death. [127] Liraglutide reduced 
aortic RAGE expression and atherosclerosis in a 

diabetic ApoE-/- mouse model.[128, 129]  

4.8. Sodium-Glucose Cotransporter-2 (SGLT-

2) Inhibitors 

Treatment with SGLT-2 inhibitors downregulates 

increased AGE / RAGE signaling in ZDF rats 

(Zucker diabetic rats), animal models for type 2 
diabetes. Serum level of AGE precursor 

methylglyoxal is reduced, thereby reducing 

AGE formation and RAGE-dependent signal 

transduction. In ZDF rats, treatment with 
engliflozin can prevent oxidative stress, 

AGE/RAGE signaling, and inflammation 

development by reducing glucose levels, 

restoring insulin sensitivity and signal 
transduction, increasing glucose utilization, and 

partially improving endothelial function. In 

addition, improvement of the redox state 
contributes to decreased apoptosis of beta cells 

and increased insulin production. [130] 

Treatment with high-dose SGLT2 inhibitors in 

STZ rats reduced both transcription and 
translation of RAGE gene, AGE-positive 

protein levels in the aorta, and serum level of 

AGE precursor methylglyoxal.[131] 
Furthermore, studies have shown that 

application of engliflozin for 4 weeks 

significantly reduced the expression of AGEs, 
RAGE, 8-OHdG, and F4/80 in kidneys of 

streptozotocin-induced diabetic rats. This 

suppression of AGE-RAGE axis partly inhibited 

the oxidation, inflammation and fibrosis in the 
kidneys of diabetic rats. [132]  

4.9. Insulin 

Studies have confirmed that circulating levels of 
AGEs are associated with insulin resistance, 

indicating an association of RAGE gene 

polymorphisms and insulin resistance. [133] In 

addition, glycated albumin (a source of AGEs) 
may be involved in the regulation of insulin 

signaling. In adipose tissue of insulin-resistant 

rat models, an increase in methylglyoxal (a 
precursor of AGEs) impairs insulin signaling by 

reducing insulin-induced glucose uptake [134]. 

AGEs are involved in several mechanisms to 
contribute to insulin resistance. First, due to 

direct changes in insulin, glucose uptake is 

reduced; insulin clearance is suppressed; and 

insulin secretion is further increased. Second, 
AGE may increase RAGE expression and 

promote insulin resistance by decreasing the 

expression of AGER1 and an insulin receptor 
substrate—SIRT1—whose depletion leads to 

changes in insulin signaling and induction of 

inflammation. Third, AGEs affect insulin 
signaling and induce inflammation by stimulating 

PKCα and up regulating TNFα [135-141] 

5. CONCLUSION AND FUTURE EXPECTATIONS 

Diabetes is a common chronic disease that 
severely affects human health. AGEs promote 

the occurrence and development of diabetes and 

its complications through multiple mechanisms 
that involve many signaling pathways. In recent 

years, research on AGEs has become one of the 

hot spots. But research in this area is relatively 

few and not deep enough. Various 
hypoglycemic drugs, in addition to their role in 

in hypoglycemia, hindered the production and 

accumulation of AGEs from many aspects, such 
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as: A carbose, Nateglinide, Glimepiride can 
reduce glycerol-AGEs levels;increased MG 

(methylglyoxal, the major precursor of AGE) 

interferes with insulin signaling; SGLT-2 
inhibitors reduce MG levels; Metformin binds 

MG, resulting in decreased production of MG-

associated AGEs; Gliclazide, Metformin, 

Linagliptin, GLP-1 receptor agonists, and 
Engliflozin can all reduce the expression of 

AGEs-RAGE genes in kidney tissues of diabetic 

rats, and so on. There by hypoglycemic drugs 
reduce the adverse effects of AGEs on various 

tissues. This review may provide rationale for 

the research and development of specific drugs 
targeting AGEs in the future.  
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