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1. INTRODUCTION 

Lung cancer (LC) is the 2 nd most common 

cancer diagnosis by gender, behind prostate 

cancer for males and breast cancer for females 

[1]. The most common age of LC diagnosis is 

70 years, whereas in most cases the prognosis is 

extremely poor as 17.4% of people in the United 

States that were diagnosed with LC survive five 

years after the diagnosis [2]. It is also 

responsible for a high rate of morbidity and 

mortality as advanced LC has extremely poor 

prognosis, with a 5-year survival of only 5% [1]. 

LC pathogenesis has not been fully elucidated, 

whereas LC molecular and biological basis is 

complex and heterogeneous. LC development is 

a multistage process involving genetic 

alterations in DNA sequence, epigenetic 

modifications, activation of growth promoting 

pathways and inhibition of tumor suppressor 

pathways that result in DNA damage, contribute 

to cancer initiation, promotion and progression 

as regulate gene expression and cellular 

signaling pathways in the normal cells and 

transform normal lung epithelial cells into LC 

cells [3,4]. However, it remains unknown 

whether all lung epithelial cells or only a subset 

of those, such as lung epithelial stem cells or 

their immediate progenitors are susceptible to 

complete malignant transformation. 

Moreover, whereas the tumor-initiating cells 

may have only a few mutations, as the tumor 
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expands, cells may acquire additional mutations 

[5]. Previous researches have shown that those 

alterations usually occur early in malignant 

transformation [6, 7]. Those alterations lead to 

LC development and exhibit the classical 

hallmarks of cancer, namely self sufficiency of 

growth signals, insensitivity to growth-

inhibitory/antigrowth signals, limitless 

replicative potential, evasion of programmed 

cell death/apoptosis, tissue invasion, sustained 

angiogenesis, and metastasis [8]. 

LC is divided into two main types based on 

histological, clinical, and neuroendocrine 

characterristics, non-small cell LC (NSCLC) 

and small cell LC (SCLC), their prevalence is 

80%-85% and 15%-20%, respectively. 

Moreover, NSCLC is also divided into other 

histological subtypes, such as adenocarcinoma 

(LADC), squamous carcinoma (SCC), large-cell 

carcinoma (LCC), including large-cell 

neuroendocrine LC (LCNEC), bronchoalveolar 

LC, and mixed histological types, such as 

adenosquamous carcinoma (ASQC) [9]. 

The main histological types and subtypes of LC 

have also differences in molecular basis. In 

particular, those molecular differences between 

NSCLC and SCLC types and among NSCLC 

subtypes are associated with oncogenic 

mutations, increased protein expression, gene 

amplification, tumor suppressing alterations 

which include mutations, deletion and loss of 

heterozygocity (LOH), loss of protein 

expression, tumor-acquired DNA methylation, 

chromosomal aberrations, and presence of 

telomerase activity. Various genes and cellular 

signaling pathways are responsible for the 

mentioned genetic alterations and are also 

implicated in cell functions such as growth, 

survival, differentiation, proliferation, 

programmed cell death, invasion, metastasis, 

etc., and include oncogenes (ONG) and tumor 

suppressor genes (TSG), such as BRAF, KRAS, 

MET, PIK3CA, EGFR, ErbB2/HER 2-neu, 

MDM2, MYC, PDGFRA, Bcl-2, CCND1, p53, 

Rb, PTEN, LKB1, CDKN2A (p16/p14ARF), 

FHIT, CAV1, APC, TUSC2, CDH 1, CDH 13, 

DAPK1, GSTP1, MGMT, RARβ, RASSF1A, 

SEMA3B,TIMP3, EML4-ALK fusion, etc. [9]. 

In LC as in other malignancies, oncogenesis is 

associated with growth promoting proteins 

activation such as, KRAS, EGFR, BRAF, MEK-

1, HER2, MET, ALK as well as inactivation of 

TSGs, such as P53, PTEN, LKB1 [3]. 

Activation of growth promoting oncogenes can 

occur by gene amplification or other genetic 

alterations including point mutations and 

structural rearrangements leading to 

uncontrolled signaling through oncogenic 

pathways [10]. 

A better understanding of molecular alterations 

and the multiple biochemical pathways involved 

in the molecular pathogenesis of LC at multiple 

levels, genetic, epigenetic, protein expression 

and their functional significance, are crucial to 

the development of treatment strategies that can 

target molecular aberrations and their 

downstream activated pathways [9], and could 

be contribute to LC diagnosis, treatment and 

prognosis. Moreover, cell survival depends on 

continued activation of the aberrant signaling 

[10] making them ideal candidates for targeted 

treatments. Identifying the genes and pathways 

involved, determining how they relate to the 

biological behavior of LC, and their utility as 

diagnostic and therapeutic targets are important 

basic and translational research issues. 

Consequently, current information on the crucial 

molecular stages in LC pathogenesis regarding 

the role of TSGs and their involvement in 

preneoplasia, primary cancer, and metastatic 

disease is the aim of the current review. 

2. TUMOR SUPPRESSOR GENES 

It is known that TSGs negatively regulate cell 

growth .Their function is crucial for 

carcinogenesis and requires inactivation of both 

gene alleles, according to Knudson’s two hit 

hypothesis. Mutation, epigenetic silencing or 

other aberrations, are responsible for the 

inactivation of the individual gene in one allele. 

The 2 nd allele in some cases is targeted by 

deletion (homozygous deletions), methylation 

with consequent loss of expression, or mutation 

[11]. The final result is that the 2 nd allele is 

inactivated due to LOH, leading to loss of a 

chromosome region by deletion, nonreciprocal 

translocation or mitotic recombination. The 

most frequently inactivated TSGs in LC cases 

are TP53, retinoblastoma1(RB1), PTEN, 

RASSF1A, CDKN2A, Serinethreonine Kinase 

11 (STK11/LKB1), and FHIT [9,12], and 

chromosomal regions that exhibit allelic loss in 

LC cases involve TSGs such as TP53 (17p13), 

PTEN (10q22), p16 (9p21), and RB1 (13q12) 

[12].(Fig. 1) 

2.1. Pten Tumor Suppressor Gene 

PTEN (phosphatase and tensin homolog) is a 

TSG which is mutated in many hereditary and 

sporadic human cancers, is located on 10q23 

chromosome, encodes a protein that acts as a 
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dual lipidand protein phosphatase, and inhibits 

the PI3K/AKT/mTOR signaling pathway by the 

dephosphorylation of the PI-(3,4,5)-

triphosphate. PTEN inactivation causes 

unlimited activation of AKT/protein kinase B 

which is independent of ligand binding 

[13].PTEN mutations have been identified in 

5% of NSCLC cases [14]despite the fact that in 

NSCLC type has found reduced protein 

expression in about 75%. Those mutations are 

more frequent in SCC (10.2%) than LADC 

cases (1.7%) and are also associated with a 

smoking history [15].The Nuclear Factor-kappa 

B (NF-kB) activates the transcription of Snail, 

which is a PTEN transcription suppressor, 

therefore PTEN is negatively regulated by NF-

kappa B [16]. It has been demonstrated that NF-

kappa B activation was necessary and sufficient 

for inhibition of PTEN expression in a subset of 

human LC cells [17]. 

3. FHIT TUMOR SUPPRESSOR GENE 

The fragile histidine triad (FHIT) gene, a 

candidate TSG, was recently identified on 

chromosome 3p14.2. FHIT gene encompasses 

the common fragile site FRA3B on chromosome 

3, where carcinogen-induced damage can lead to 

translocations and aberrant transcripts of it 

[18].FHIT function has been investigated in 

several tumors by the upregulation of inducing 

cell cyclearrest, cell proliferation inhibition, and 

apoptosis by increasing its sensitivity to DNA 

damagingagents [19,20]. 

FHIT gene is inactivated by LOH and 

methylation in cancer cells, whereas the 

occurrence of mutations is very rare [21]. FHIT 

promoter hypermethylation that leads to FHIT 

inactivation and FHIT protein expression lack, 

has been identified to play a crucial role in lung 

alveolar differentiation, regulation and epithelial 

tumorigenesis [22-24]. FHIT gene is inactivated 

in 50% to 70%of all LC cases [25]. 

Abnormal FHIT transcripts, including exons 

deletions, insertions between exons, and 

insertions that replace exons, have been 

identified in a high proportion of LC cases. 

Reduction or complete loss of FHIT expression 

have been found in about 30%-70% of NSCLC 

cases and in about 20%of bronchial biopsies 

from chronic smokers without evidence of LC, 

finding that supports the theory that FHIT gene 

is a molecular target of tobacco smoke 

carcinogens [26]. In a study by Fong et al. 

primary LCs, tumor cell lines, and preneoplastic 

bronchial lesions were examined for molecular 

genetic abnormalities in FHIT gene, which links 

the FRA3B fragile site on 3p14.2region, and the 

outcomes showed that 3p14.2 allele loss was 

existed in 100% of SCLC and 88%of NSCLC 

cell lines and 45% of primary NSCLC cases and 

rare in LADC cases, with manybreak-points. 

Those findings suggest the involvement of 

several distinct regions in the FRA3Bsite. 

Homozygous deletions within the FHIT/FRA3B 

region were found in 4.4% of thoraciccancer 

cell lines [27]. 

4. APC TUMOR SUPPRESSOR GENE 

Adenomatous polyposis coli (APC) is a protein 

that is encoded by the APC gene, a TSG 

andconstitutes a negative regulator that controls 

beta-catenin concentrations as acts as an 

antagonistof the Wnt signaling pathway. It also 

interacts with E-cadherin, which is implicated in 

cell adhesion , cell migration, transcriptional 

activation, and apoptosis [28].APC gene 

mutations may result in colorectal cancer [29], 

as cause familial adenomatous polyposis (FAP), 

finding that suggests its role as a potential 

predictor for cancer initiation or development. 

It has been found that APC gene promoter 

methylation, inhibits its expression, and is 

mediated by changes of chromatin modulation 

and aberrant binding of CCAAT-box binding 

transcription factors [30]. Previous studies have 

shown that APC promoter hypermethylation in 

NSCLC cases has been reported as an effective 

biomarker for diagnosis [31, 32], as in general, 

the link between APC hypermethylation with 

cancers has been extensively assessed [33]. 

However, the results ofthose studies are 

controversial because of differences in 

epidemiological parameters examined and 

analyzed, detection methods, etc.LOH on 

chromosome 5q, the APC locus, is a frequent 

finding in LC cases, however previous studies 

have recorded no APC mutations. In a study by 

Ohgaki et al. [34], 114 human LC specimens 

were investigated for alterations in the mutation 

cluster region of the APC gene and revealed 

APC mutations in 5% of SCC cases, findings 

that suggest that APC mutations are infrequent, 

but may be involved in the pathogenesis of a 

small subset of LC cases. 

5. STK11 (LKB1) TUMOR SUPPRESSOR GENE 

Serine/threonine kinase 11 (STK11or LKB1) 

gene encodes a serine/threonine kinase, is 

locatedon19p13 chromosome, and functions as a 

TSG [35]. It acts as a mTOR inhibitor through 

mTOR path way inhibition via adenosine 

monophosphate-activated protein kinase 

(AMPK) [36] and regulates differentiation, 
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metabolism, cell polarity, motility and 

metastasis [35], whereas is alsoimplicated in cell 

cycle regulation, and chromatin remodeling [36, 

37]. mTOR signaling path way components 

deregulation, except for KRAS mutations, has 

been identified in 30% of LADC  cases 

[38].STK11 gene inactivating mutations are 

responsible for Peutz-Jeghers syndrome [39], 

however somatic inactivation caused by point 

mutation and deletion on 19p13 are presented in 

30% of LC cases, and constitutes the 3 rd most 

commonly mutated gene in LADC, caused by 

various somaticmutations or deletions that 

produce abnormal proteins, after p53 and RAS 

[38, 40-42]. STK11gene inactivating mutations 

are often associated with KRAS activation and 

can lead to cell growth promotion [42], are more 

common in poorly differentiated LADC cases, 

whereas are rarein SCLC cases [40, 42, 43]. 

Moreover, STK11 gene inactivation is more 

frequent in LADC compared to SCC cases [40, 

41]. An association has been recorded between 

STK11 gene mutations and smoking in males 

[41, 42, 44], and an association with KRAS 

mutations has also been found [41,42]. 

6. TUSC2 TUMOR SUPPRESSOR GENE 

Tumor suppressor candidate 2 gene (TUSC2), 

also known as FUS1, is considered as a 

candidate TSG. TUSC2 functions are still 

remain unclear. Previous researches showed that 

TUSC2 induces G1 cell cycle arrest and 

apoptosis [45, 46], regulates calcium signaling 

[47], modulates tyrosinekinases [48], and affects 

gene expression [49].It is located on 

chromosome 3p21.3 which is homozygously 

deleted in lung and breast cancers.TUSC2 is 

considered as a TSG in LC cases as its mRNA 

expression loss has been recorded in80% of the 

tumors, because of 3p21.3 deletion [50]. It has 

also recorded that 3p21.3 deletion was very rare 

in LC cases (1.1% TCGA), except for malignant 

mesothelioma (36%) [49], where asno evidence 

of methylation was identified in the TUSC2 

gene promoter region in LC cases [46].TUSC2 

promoter region was partially methylated in oral 

tumors but unmethylated in normalmucosa [51]. 

TUSC2 somatic mutations have not been 

observed in any cancer specimens according to 

TCGA, although infrequent mutations have 

been identified in LC cell lines [46]. 

7. CDH1 TUMOR SUPPRESSOR GENE 

CDH1/E-cadherin is a cell-cell adhesion trans-

membrane glycoprotein, and is encoded by 

theCDH1 gene which is located on 16q22.1 

region [52]. CDH1 is a TSG and plays a critical 

role in maintaining cell adhesion and adherent 

junctions in normal tissues. Its expression is 

frequently absent in several epithelial tumors, 

and loss of normal intercellular junctions can 

promote cancerinvasion and metastasis, whereas 

it is also associated with several types of cancers 

[53,54].CDH1 loss promotes β-catenin 

translocation into the nucleus, and regulates 

transcription of various targeted proteins [55]. It 

is also implicated in epithelial-mesenchymal 

transition (EMT) which is the crucial early step 

for cancer metastasis [56]. Therefore, CDH1 

low expression levelis associated with tumor 

invasiveness, metastasis, and poor prognosis. It 

has also found that decreased expression of 

CDH1 is responsible for the malignant 

phenotype of NSCLC [57], andCDH1 promoter 

methylation is associated with LC cases [58].Y-

box binding protein-1 (YBX1) is over-expressed 

in various tumors including LC cases and serves 

as a novel marker of LC progression [59]. In a 

study by Stella et al. [60] was found thatdown-

regulated CDH1 strengthens EGFR transcription 

in a phospho-YBX1 dependent way and 

contributes to cell proliferation and metastasis in 

NSCLC cells. YBX1 plays a critical role in 

EGFR up-regulation, which consequently 

promotes cell proliferation and invasion ability 

in NSCLC cells. However, the mechanism that 

loss of CDH1 promotes NSCLC metastasis 

needs further investigation. Moreover, Xianfang 

et al. found down-regulation of CDH1 up-

regulated EGFR transcription levels in NSCLC 

cells [61]. 

8. CDH 13 TUMOR SUPPRESSOR GENE 

Cadherin 13, constitutes a member of the 

cadherin family, is coded by the CDH13 gene, 

which islocated on chromosome 16q24.2 [62]. 

Cadherin proteins are implicated in the 

formation of intercellular junctions, such as N- 

and E-cadherin. In many epithelial cancers has 

been identified lossof cadherin expression and 

may play a critical role in malignant cell 

invasion and metastasis[63].Recent researches 

have shown that CDH 13 functions as an anti-

oncogene in lung [64], breastcancer [65] and in 

other organs, whereas downregulation of its 

expression could promote cancer progression. 

Toyooka et al. [66] were observed that CDH 13 

expression is reduced in LC cases, and that its 

down regulation could be attributed to 

hypermethylation in the CDH13 promoter. In 

another study was found that single nucleotide 

polymorphisms (SNPs) in CDH13 gene could 

affect themethylation of CpG islands in CDH13 
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gene [67]. Several studies have reported that 

SNPs inCDH13 gene were associated with 

cancer, such as colorectal and LC [62-64,66-

69].However, few studies have investigated the 

association between SNPs in CDH13 gene and 

NSCLC cases [70]. 

9. RASSF1A TUMOR SUPPRESSOR GENE 

The RASSF1A gene constitutes a TSG which is 

located on chromosome 3p21, it acts at the 

pointof G1/S phase cell cycle progression, 

inhibits the accumulation of Cyclin D1, and thus 

induce cell cycle arrest [71]. 3p21 location is 

epigenetically inactivated at high frequency in 

NSCLC cases. RASSF1A binds to the Ras-GTP 

binding protein Nore1, as a Rasoncoprotein 

negative effector [72]. In LC cells RASSF1A 

promoter is hyper methylated and the exogenous 

expression ofRASSF1A expresses tumorigenesis 

in nude mice [73]. Moreover, it has been 

identified that theRASSF1A gene is frequently 

inactivated in primary LC cases by the de novo 

methylation of CpG islands in the promoter 

location [74]. 

10. SEMA FAMILY AS TUMOR SUPPRESSOR 

GENES 

The semaphorin/collapsing family of molecules 

are implicated in neuronal development and has 

been shown that act as TSGs by inducing 

apoptosis. SEMA3 proteins are also involved 

invarious functions such as immune formation 

[75], organogenesis [76], neuronal apoptosis 

[77], and drug resistance [78]. Semaphorin3B 

(SEMA3B) is located on 3p21.3 chromosome, a 

location that is associated with increased allele 

loss and/ or promoter methylation in the early 

pathogenesis of lung and breast cancer [78, 79], 

belongs to the class 3 semaphorins and 

constitutes a secreted protein [80]. 

SEMA3B gene encodes a protein with tumor 

suppressor activity for LC [81]. Previous studies 

showed that treatment by using exogenously 

SEMA3B or import of a plasmid encoding 

SEMA3B in H1299 NSCLC cells reinducted 

apoptosis and a significant reduction in colony 

formation[78,81], whereas tumor-acquired 

SEMA3B missense mutations do not show such 

functions. In another study was found that 

SEMA3B expression in a p53-negative 

glioblastoma cell line was increased after p53 

reexpression, finding that suggest SEMA3B 

function as a mediator of p53tumor-suppressor 

activity. However, because H1299 cells are p53 

null, SEMA3B can induce tumor suppression 

even in the absence of p53 [82]. 

11. CAV1 AS A TUMOR SUPPRESSOR GENE 

Caveolin-1 (Cav-1), a major structural protein of 

caveolae, that are plasma membrane 

invaginations  

 

are implicated in cellular processes, such as 

lipid transport, cell adhesion, molecule 

transport, signal transduction, and tumor 

progression [83]. Recent researches suggests 

that Cav-1 has a positive regulatory effect on 

tumor growth and plays a central role in tumor 

invasion and metastasis, despite the fact that 

seems to function as a tumor suppressor protein 

at early stages of cancer progression [84,85]. 

Cav-1 regulates the activity of several pathways, 

including EGFR, Src family kinases, G-proteins, 

H-Ras, protein kinase C, endothelial nitric oxide 

synthase, andintegrins, which are potentially 

implicated in the development of cancer, by 

forming signaling complexes [83]. Therefore, 

Cav-1 could be a key molecule for growth-

related signaling and cancer development. 

It has been suggested that Cav-1 gene acts as 

both a TSG and an ONG. Its expression is 

down-regulated in lung, colon and other 

cancers, whereas cell oncogenic transformation 

has been associated with reduction of its 

expression, and antisense-mediated down-

regulation of its expression could lead to 

oncogenic transformation in NIH 3T3 cells [86-

88]. On the contrary, other reports have shown 

that Cav-1 expression was found to be up-

regulated in several cancers such as esophagus 

and LC [89, 90]. Moreover, Cav-1 exogenous 

expression in malignancy transformed cells and 

cancer cell lines inhibited cell growth and 

tumorigenesis, observation that indicates its 

roleas a TSG [91, 92]. 

12. MGMT TUMOR SUPPRESSOR GENE 

O-6-methylguanine-DNA methyltransferase 

(MGMT), is a specific DNA damage reversal 

repairprotein, which protects tissues against the 

carcinogenic and toxic effects of methylating 

andchloro-ethylating agents by removing 

adducts from O 6 position of guanine and 

prevents mis-match and errors during DNA 

replication and transcription [93].MGMT has 

been reported as a TSG in colorectal cancer 

[94], whereas its epigenetic silencing caused by 

its promoter methylation at specific CpG islands 

can lead to loss of its activity in several cancers, 

including LC [95,96]. The methylation status of 

the MGMT promoter has been observed in some 

cancers, such as NSCLC [97], glioblastoma 
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[98], breast cancer [99], and others. In NSCLC 

cases has been identified a varying level of 

MGMT promoter methylation 

frequency[74,100], observation that could be 

attributed to various nature of the clinical 

samples, that were analyzed. Previous meta-

analysis studies have shown that MGMT 

methylation is associated with NSCLC 

incidence [101-103], but those studies were 

based on a small amount of various samples and 

therefore could lead to unreliable outcomes, as 

they recorded quite different ratesof MGMT 

hyper-methylation from different samples, 

whereas only the samples from tumortissue 

showed higher methylation compared to control 

group[101,102]. Moreover, those studies have 

also not completely investigated the association 

between MGMT methylation and clinical 

characteristics of NSCLC, but only analyzed the 

risk between MGMT methylation and 

NSCLC[101-103]. 

13. TP53 TUMOR SUPPRESSOR GENE 

TP53 gene is located on chromosome 17p13, 

encodes a nuclear phosphoprotein of 53 kDa 

that identifies and binds to regions of damaged 

DNA [104] and acts as a transcription factor 

controlling the expression of a large number of 

different genes. It is induced in case of DNA 

damage orcarcinogenic or oxidative stress and 

leads to cell cycle arrest by inducing expression 

of Cyclin Dependent Kinase (CDK) inhibitors 

which regulate cell cycle checkpoint signals, 

causing the cell to undergo G1 arrest and 

allowing DNA repair or programmed cell 

death/apoptosis. As atranscription factor has 

downstream target genes involving cell cycle 

arrests G1 and G2, DNA repair or apoptosis, 

and upstream regulatory genes, including 

p14ARF and MDM2. MDM2and p14ARF are 

implicated in cases of abnormal functions of p53 

protein. p14ARF is a crucial TSG, is encoded in 

the 9p21 locus of p16INK4 from an alternative 

exon 1β, responding to both oncogenic stimuli 

(Ras, MYC, E2F1) and DNA damage and its 

activation induces G1 arrest andapoptosis, either 

dependently or independently of p53 protein 

[105,106].TP53 TSG is the most frequently 

mutated gene in LC cases [107], whereas 

p14ARF protein expression loss, due to yet 

unknown mechanisms, occurs frequently in 

SCLC, LCNEC and in some LADC cases [108]. 

MDM2 amplification is rare, almost 6% of 

NSCLC cases, although over expression at the 

level of mRNA and protein is frequent, 

occurring in 30% of both SCLC and NSCLC 

cases [105]. 

TP53 gene’s inactivation is one of the most 

significant genetic abnormalities in LC cases 

with hemizygous deletion of 17p13, containing 

the locus of TP53, occurring in 90% of SCLC 

case sand about 65% of NSCLC cases [109]. 

Inactivating mutations of the TP53 gene which 

most of them are missense mutations within the 

DNA-binding domain, have been identified in 

80-100%of SCLC cases, in 90% of LCNEC 

cases and in 50% of NSCLC, of which gain-of-

function mutations prevent the p53 protein 

binding to MDM2 and subsequent p53 

ubiquitin-dependentproteolysis [110-112]. 

Moreover, in a meta-analysis by Tammemagi et 

al. [113] in over 4,000NSCLC cases were 

recorded alterations by mutation or protein 

accumulation in only 46.8% ofthose cases, more 

commonly in SCLC than LADC cases and were 

associated with higher tumorgrade, stage and 

male gender. In a comprehensive genomic 

analysis according to The Cancer Genome Atlas 

(TCGA) project [114] mutations of TP53 gene 

were recorded in at least 81% of SCLC cases. In 

another research was recorded TP53 gene 

mutations in 85 of 188 LADC cases(45%) [38]. 

TP53 gene mutations in NSCLC cases, are 

associated with a positive history of smoking or 

exposure to env cironmental tobacco smoke 

[115,116]. The range of mutations of different 

types of TP53 gene mutations is different 

between smokers and non-smokers and it has 

been observed that smoking-related cancers 

show a significantly higher frequency of GC to 

TA transversions at CpG islands compared to G 

to C transversions, which were induced by 

PAHs intobacco smoke, and G to A transitions 

at CpG dinucleotides more commonly found in 

neversmokers [116,117]. On the contrary, GC to 

TA(G-A) transition at non-CpG islands were 

associated with LC in never-smokers 

[111,112].TP53 gene alterations and 

stabilization by mutation are frequent in 

proximal pre-invasive lesions of squamous 

dysplasia type and carcinoma in situ [111,112]. 

In a meta-analysis of 74 studies was recorded 

that aberrant TP53 gene detected by protein 

expression or mutational analysis was anadverse 

prognostic factor in NSCLC cases [118]. Some 

point mutations in TP53 gene accord again-of-

function phenotype leading to increased 

aggressiveness of LC [119]. TP53 gene 

mutations can occur in association with KRAS 

and EGFR mutations [115], whereas genetic 

alterations of TP53 gene have also been 
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associated with treatment resistance 

[104].Ataxia telangiectasia mutated (ATM) gene 

is another gene upstream of the p53/p14ARF 

pathway, and mediates the response to DNA 

damage. It is known to be mutant in ataxia 

telangiectasia disease, characterized by a lack of 

DNA repair, but is not known as a mutant in LC 

cases. Arecent DNA sequencing of 623 genes in 

188 LADC cases showed ATM to be mutant in 

14(7.4%), thus contributing the strong targeting 

of p53 pathway functions in LC cases [38].The 

downstream p53 pathway includes target genes 

of TP53 transcription, which play key rolesin 

the mitochondrial apoptotic pathway, as well as 

in the death receptor pathway Bcl-2 as 

antiapoptotic and Bax as pro-apoptotic, are up 

and down regulated by p53, respectively, Fas 

and the tumor necrosis factor receptor (TNFR)-

like apoptosis inducing ligand (TRAIL) receptor 

DR5(TRAIL-death receptor 5) belong to the 

TNFR family. Those four factors are strongly 

deregulated in LC cases, which results in strong 

resistance to both mitochondrial and death 

receptor-induced apoptosis [120]. 

14. RAR AS TUMOR SUPPRESSOR GENES 

The retinoic acid receptor (RAR) is a type of 

nuclear receptor, act as a transcription factor 

[121]and is activated by both all-trans retinoic 

acid and 9-cis retinoic acid [122]. Two families 

of retinoic receptors have been identified, RARs 

and RXRs with three subtypes for each (α, β, 

γ)and several isoforms arising from promoter 

usage and alternate splicing and are encoded by 

the RARA, RARB, RARG genes, respectively. 

Moreover, RAR genes expression is under 

epigenetic regulation by promoter methylation 

[122,123]. The effects of retinoids are mainly 

mediated by the nuclear retinoid receptors, 

which are members of the steroid and thyroid 

hormone receptor super family [124]. The 

biological functions of the multiple isoforms of 

RARs are still remain unclear, however, those 

isoforms could explain the implication of RARs 

in various biological effects. It has been shown 

that the absence of two isoforms for RARα (α1 

and α2) and for RAR γ(γ1 and γ2), and four 

isoforms for RARβ (β1-β4) and RARβ1 [125], 

could be responsible for retinoid resistance in 

lung carcinogenesis [126]. 

RARβ2 isoform is located on 3p24 region and 

its expression was reduced or even suppressed 

in LC cell lines, suggesting that its reexpression 

could suppress LC progression [127]. Loss or 

reduced RARβ2 expression has been identified 

in a high frequency in heavy smokers in 

NSCLCs and bronchial biopsy specimens 

[128,129], and in other solid tumors 

[130,131].In a previous study was observed that 

RARs and RXRs were expressed in 89% of 

controlnormal bronchial tissue specimens in 

healthy individuals and that in distant normal 

bronchusspecimens in NSCLC patients RARα, 

RXRα and γ were expressed in more than 95% 

of the tumor-free specimens. However, RARβ, 

RARγ and RXRβ expression was reduced, and 

was observed in 76% of NSCLC specimens 

[128], finding that was in line with another 

research in which was recorded reduced or 

absent RARβ protein expression in 50% of 

resected NSCLCsspecimens [132]. In the 

mentioned studies was found normal or elevated 

RARα and RXRα expression in NSCLC 

specimens, whereas LOH at the region 3p24, in 

which is located RARβ genewas identified in a 

high frequency, and was also found in non-

neoplastic lesions, suggesting that modified 

retinoid receptor expression may be involved in 

lung carcinogenesis. 

The abnormal methylation of the genes 

promoter regions consists a mechanism of gene 

silencingin cancer [133]. As it has been 

mentioned RAR genes expression is under 

epigenetic regulation by promoter methylation 

[122,123]. RARβ gene hypermethylation 

frequently leads to loss of RARβ expression 

which has been recorded in 43% of primary 

resected NSCLC samples [134]. It is also 

implicated in the pathogenesis of SCLC, 

whereas it was found that LC cell lines 

treatment with the demethylation agent 5-aza-

2&39;-deoxycytidine (5-AZA-CdR) could 

restore RARβ expression. RARβ gene’s mRNA 

expression loss has been detected in many LC 

cell lines, observation that indicates its role as a 

TSG [135]. 

15. CDKN2A TUMOR SUPPRESSOR GENE 

CDKN2A, also known as CDK inhibitor 2A, is 

a gene which in humans is located on 

chromosome 9 p21.3. The gene codes for two 

proteins, including the INK4 family member 

p16 (or p16INK4a) and p14 ARF. Both act as 

TSGs by regulating the cell cycle. p16 inhibits 

CDK4 and -6and activates the RB family of 

proteins, which prevent the transition from G1 

cell cycle phase toS-phase. p14ARF activates 

and interacts with the TP53 TSG [136].Somatic 

mutations of CDKN2A are common in the 

majority of human cancers, and it has been 

assessed that CDKN2A gene is the 2 nd most 
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commonly inactivated gene in cancer after TP 

53.It has been shown that in LADC cases often 

exist genetic mutations in CDKN2A gene which 

leads to inactivation of p16 and is one of the 

most common genetic alterations in many forms 

of cancer including LADC [137-139]. 

Both alleles must be inactivated before its 

function is eliminated. In its inactivation are 

implicated mechanisms such as homozygous 

deletion (HD), hypermethylation in the 

promoter CpG island (methylation), and point 

mutation. p16 is frequently inactivated by HD or 

promoter hypermethylation, and rarely by point 

mutation in primary NSCLC cases [137,140]. It 

has also been observed that the frequency of p16 

methylation is significantly higher in LADC 

with KRA Smutation, however, the associations 

between p16 inactivation mechanisms and other 

common genetic mutations in LADC such as 

EGFR and STK11 remain controversial or have 

never been investigated [141]. Associations 

between smoking and p16 methylation and 

between p16 HD and never smokers have been 

recorded in some researches, however those 

findings are thought to be inconsistent [137,140-

142]. 

16. RB TUMOR SUPPRESSOR GENE 

Retinoblastoma (RB) was the first TSG which 

discovered based on an association with a rare 

childhood tumor, retinoblastoma [143]. The 

Knudson hypothesis of a 2 nd hit in retinal cells 

of children with germline mutation led to the 

understanding the role of TSGs in cancer 

development [11]. A rate of 40% of 

retinoblastomas are hereditary and individuals 

with hereditary retinoblastoma are at high risk 

for malignancies such as breast cancer, 

melanoma, LC, osteosarcoma, bladder cancer 

and other epithelial cancers [144,145]. Somatic 

alterations in RB1 gene arecommon in various 

malignancies including LC, bladder, prostate, 

and breast cancer. RB1gene islocated on 

chromosome 13q14.1-q14.2.region, encodes the 

retinoblastoma pocket protein (RB)and is a 

downstream effector of p53-mediated G1 arrest 

through activation of the CDK inhibitorp21. 

CDK inhibitors, such as p16INK4A, 

p15INK4B, maintain RB in the 

unphosphorylated, active form. RB protein is 

implicated in the cell cycle regulation by 

binding to the unphosphorylated form of E2F 

transcription factors and suppresses their 

activity. After mitogenic stimulation,the CDKs, 

such as CDK4,CDK-6, Cyclin D and CDK2-

cyclin E phosphorylate RB, which leadsto 

release of the binding to E2F factors and 

progression through the cell cycle, and finally 

leads to G1–S transition [146]. RB, in addition 

to regulation of cell proliferation has also a 

crucialrole in the regulation of EMT [147,148] 

and a possible role in immune response [149]. 

The absence of RB protein, is the most frequent 

mechanism of escape from G1 check-point in 

SCLC cases, whereas the RB 

hyperphosphorylation in NSCLC cases which is 

a common event, disarranges the G1 checkpoint 

control. Loss of RB protein occurs in more than 

70% of highgrade LCNEC, in more than 90% of 

SCLC tumors, and in only 10-15% of NSCLC 

cases [150]. 

A wide analysis of DNA sequences in LADC 

also identified RB1 mutation in some cases 

[38]pointing to the persistent negative selection 

for RB functions in LC cases (loss, 

phosphorylationand mutation) in addition to 

LOH at 13q14 (allelic loss) which is common in 

NSCLC cases [151,152]. Inactivation of RB 

functions by phosphorylation is mainly caused 

by the loss of p16INK4A expression and/or over 

expression of Cyclin D1 and Cyclin E, has been 

detected in NSCLC cases [120].CDK4 is rarely 

over expressed but is amplified in a small subset 

of NSCLC cases. On the contrary, Cyclin D1 

over expression and p16INK4A loss have been 

observed in 40–50% of NSCLC cases [153], 

whereas previous studies showed that 

overexpression of Cyclin D1 gene (CCD1) was 

observed in 35-50% of NSCLC cases and both 

CCD1 over expression and p16INK4A loss 

were early phenomena, and were present as 

soon as pre-invasive lesion appeared, with an 

increasing squamous dysplasia grade level 

[112,154]. Cyclin D1 is rarely amplified in LC, 

however, asmall percentage of amplification of 

CCD1 was recently identified in a wide genomic 

characterisation of the LADC. Moreover, Cyclin 

D1 (CCND1) and Cyclin E (CCNE2) genes 

were foundamong the top focal regions of 

amplification in LADC cases [151].Loss of 

p16INK4A expression is attributed to its 

methylation in 40%, its homozygous deletion 

in30% and its mutation in 10% in cases of 

expression losses [153]. Allelic loss in 9p21 

region (p16INK4A loss of allele LOH) which 

contains the protein-coding genes CDKN2A and 

CDKN2Bis a frequent genetic aberration and 
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leads to the p16 functions attenuation in addition 

to methylation [151]. 

A reverse relationship between Cyclin D1 over 

expression and RB loss shows that Cyclin D1 

andp16INK4 are the only factors of RB 

phosphorylation that are not implicated in cases 

of RB lost, situation that is obvious in SCLC 

cases, in which RB is mostly lost, but Cyclin D1 

or p16INK4alterations are rare. In contrast to 

previous observation, Cyclin E may be over 

expressed in 30%of SCC cases, in the absence 

of RB, because of the Cyclin E response to 

DNA damage and genetic instability. Cyclin E 

over expression is an early event in LC 

bronchial preneoplasia [112]. 

17. DAPK TUMOR SUPPRESSOR GENE 

Death-associated protein kinase (DAPK) is a 

pro-apoptotic Ca 2+ calmodulin-regulated 

serine/threonine kinase which is implicated in 

various cellular functions, promotes either 

apoptosis initiated by interferon (IFN)-γ, or 

autophagic cell death in response to various 

stimuli, including ONGs, transforming growth 

factor-β (TGFβ), activation of Fas/CD95 

receptors detachment from extracellular matrix, 

and tumor necrosis factor-α (TNFα) [155,156]. 

DAPK-1 is a tumor suppressor protein and 

shows metastatic inhibition properties, whereas 

hypermethylation DAPK gene promoter has 

been identified in some types of cancers, 

leadingto its functional loss rather than mutation 

[157,158]. DAPK dysfunction may be more 

crucial for the tumorigenesis of LC because of 

the high frequency of DAP-kinase promoter 

methylation onaverage in 40.5% of LC cases 

[159-163]. Less frequently, DAPK expression 

loss can be attributed to homozygous deletion 

DAP kinase CpG island [164]. 

18. GSTP1 ENZYMES AS TUMOR 

SUPPRESSORS 

Human genes polymorphism that encodes 

enzymes which are implicated in metabolic 

activation and detoxification of lung 

carcinogens such as PAHs and aromatic amines 

has been revealed. Genetic differences among 

individual differences in their ability to activate 

and deactivate/detoxify these lung carcinogens 

are expected to affect the risk of LC developing 

[165].Glutathione S-transferases (GSTs) are 

phase II transformation enzymes implicated in 

the detoxification of dangerous agents [166]. 

GST gene family encodes genes that are critical 

for detoxication and toxification mechanisms, as 

the main role of GSTs is to detoxify dangerous 

agentsby catalyzing the nucleophilic attack by 

glutathione synthetase on electrophilic carbon, 

sulfur, ornitrogen atoms and transforms to non 

polar compounds, preventing their interaction 

with crucialcellular proteins, nucleic acids, and 

other cellular components [167]. A review by 

Altinisik et al., which examined the role of GST 

genetic polymorphisms to LC in different 

populations and based on previous reports led to 

contradictory results [168]. Several classes of 

GST, including Alpha, Mu, P1, and Theta, were 

previously found in human tissues. GSTP1 is 

the most predominant GSTs in lung tissue also 

considered to be most important in determining 

risk for LC development [169]. GSTP1 gene is 

located on chromosome 11q13, four GSTP1 

alleles have been recognized, GSTP1A-D, 

encodes a phase II metabolic enzyme that 

detoxifies reactive electrophilicintermediates, 

plays a crucial role in protecting cells from 

carcinogenic and cytotoxic agents andis 

expressed in normal tissues at variable levels in 

different cell types. Altered GSTP1 expression 

and activity have been identified in many 

tumors and could be mainly attributed to GSTP1 

DNA hypermethylation of CpG island in the 

promoter-5&39; [170].SNPs in GSTP1 have 

been identified frequently and concern rs1695 

and rs1138272 [171,172].GSTP1 has the highest 

specific activity regarding the active benzo (a) 

pyrenediol epoxide, whichis a cigarette 

metabolite, is almost exclusively active to the 

positive-enantiomer of anti-benzopyrenediol 

epoxide, which is considered to be the final 

mutagenic form of benzo (a) pyrene[173], 

whereas its accumulation is associated with LC 

development [174]. 

During cancer development, GSTP1 does not 

seem to act either as an ONG or as a TSG, since 

induced GSTP1 expression in cancer cell lines 

failed to suppress cell development. Instead, 

GSTP1 was proposed to act as a &quot; 

caretaker & quot; gene. In cases of GSTP1 

inactivation, cells appear tobecome more 

unprotected to somatic alterations upon chronic 

exposure to genome-damaging stresses as 

oxidants and electrophiles that are contributed 

by environment and lifestyle [175]. 
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Figure1:Tumor suppressor gene alterations in Lung Cancer 
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